Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Hydroxycalciomicrolite, Ca1.5Ta2O6(OH), a new member of the microlite group from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil

Full text
Author(s):
Andrade, M. B. ; Yang, H. ; Atencio, D. ; Downs, R. T. ; Chukanov, N. V. ; Lemee-Cailleau, M. H. ; Persiano, A. I. C. ; Goeta, A. E. ; Ellena, J.
Total Authors: 9
Document type: Journal article
Source: MINERALOGICAL MAGAZINE; v. 81, n. 3, p. 555-564, MAY 2017.
Web of Science Citations: 3
Abstract

Hydroxycalciomicrolite, Ca1.5Ta2O6(OH) is a new microlite-group mineral found in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. It occurs as isolated octahedral and as a combination of octahedral and rhombic dodecahedral crystals, up to 1.5 mm in size. The crystals are yellow and translucent, with a white streak and vitreous to resinous lustre. The mineral is brittle, with a Mohs hardness of 56. Cleavage is not observed and fracture is conchoidal. The calculated density is 6.176 g cm(3). Hydroxycalciomicrolite is isotropic, n(calc). = 2.010. The infrared and Raman spectra exhibit bands due to OH stretching vibrations. The chemical composition determined from electron microprobe analysis (n = 13) is (wt.%): Na2O 0.36(8), CaO 15.64(13), SnO2 0.26(3), Nb2O5 2.82(30), Ta2O5 78.39(22), MnO 0.12(2), F 0.72(12) and H2O 1.30 (from the crystal structure data), O = F -0.30, total 99.31(32), yielding an empirical formula, (Ca1.48Na0.06Mn0.01)(Sigma 1.55)(Ta1.88Nb0.11Sn0.01)S2.00O6.00{[}(OH)(0.76)F0.20O0.04]. Hydroxycalciomicrolite is cubic, with unit-cell parameters a = 10.4205(1) angstrom, V = 1131.53(2) angstrom(3) and Z = 8. It represents a pyrochlore supergroup, microlite-group mineral exhibiting P4(3)32 symmetry, instead of Fd (3) over barm. The reduction in symmetry is due to long-range ordering of Ca and vacancies on the A sites. This is the first example of such ordering in a natural pyrochlore, although it is known from synthetic compounds. This result is promising because it suggests that other species with P4(3)32 or lower-symmetry space group can be discovered and characterized. (AU)

FAPESP's process: 11/22407-0 - New and rare Brazilian mineral species characterization
Grantee:Daniel Atencio
Support Opportunities: Regular Research Grants
FAPESP's process: 13/03487-8 - Center of characterization of new mineral species: Raman spectroscopy, electron microprobe and X-ray and neutron diffraction
Grantee:Marcelo Barbosa de Andrade
Support Opportunities: Research Grants - Young Investigators Grants