Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Multi-energy calibration applied to atomic spectrometry

Full text
Author(s):
Virgilio, Alex ; Goncalves, Daniel A. ; McSweeney, Tina ; Gomes Neto, Jose A. ; Nobrega, Joaquim A. ; Donati, George L.
Total Authors: 6
Document type: Journal article
Source: Analytica Chimica Acta; v. 982, p. 31-36, AUG 22 2017.
Web of Science Citations: 29
Abstract

Multi-energy calibration (MEC) is a novel strategy that explores the capacity of several analytes of generating analytical signals at many different wavelengths (transition energies). Contrasting with traditional methods, which employ a fixed transition energy and different analyte concentrations to build a calibration plot, MEC uses a fixed analyte concentration and multiple transition energies for calibration. Only two calibration solutions are required in combination with the MEC method. Solution 1 is composed of 50% v v(-1) sample and 50% v v(-1) of a standard solution containing the analytes. Solution 2 has 50% v v(-1) sample and 50% v v(-1) blank. Calibration is performed by running each solution separately and monitoring the instrument response at several wavelengths for each analyte. Analytical signals from solutions 1 and 2 are plotted on the x-axis and y-axis, respectively, and the analyte concentration in the sample is calculated from the slope of the resulting calibration curve. The method has been applied to three different atomic spectrometric techniques (ICP OES, MIP OES and HR-CS FAAS). Six analytes were determined in complex samples (e.g. green tea, cola soft drink, cough medicine, soy sauce, and red wine), and the results were comparable with, and in several cases more accurate than, values obtained using the traditional external calibration, internal standardization, and standard additions methods. MEC is a simple, fast and efficient matrix-matching calibration method. It may be applied to any technique capable of simultaneous or fast sequential monitoring of multiple analytical signals. (C) 2017 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 14/18393-1 - Evaluation of gradient flow analysis as calibration strategy for spectroanalytical techniques with plasma source
Grantee:Alex Virgilio
Support Opportunities: Scholarships in Brazil - Post-Doctoral