Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium

Full text
Author(s):
Santos, Felipe Martini [1] ; Balieiro, Fabiano de Carvalho [2] ; Fontes, Marcelo Antoniol [3] ; Chaer, Guilherme Montandon [3]
Total Authors: 4
Affiliation:
[1] Univ Fed Rural Rio de Janeiro, Dept Silvicultura, BR 465 Km 7, BR-23891000 Seropedica, RJ - Brazil
[2] Embrapa Solos, Rua Jardim Bot 1024, Rio De Janeiro, RJ - Brazil
[3] Embrapa Agrobiol, BR 465 Km 7, BR-23891000 Seropedica, RJ - Brazil
Total Affiliations: 3
Document type: Journal article
Source: PLANT AND SOIL; v. 423, n. 1-2, p. 141-155, FEB 2018.
Web of Science Citations: 6
Abstract

Soil microbial-derived litter decomposition represents an important step in the global carbon and nutrient cycling and, at the local level, is primarily driven by litter chemistry. Here, we assessed how mixed-species plantations with Eucalyptus urograndis and Acacia mangium could be a key to enhancing litter production, decomposition, and soil microbial activity. The relationships between litter decomposition and litter quality and quantity were compared among 6-year-old monocultures of E. urograndis and A. mangium (E100+N and A100, respectively) and a mixed plantation of both species (E50A50). Additionally, we evaluated soil microbial biomass carbon (MBC) and nitrogen (MBN), soil basal respiration (SBR), soil enzymes and the N mineralization potential. The return to soil of N via litterfall in E50A50 was greater than E100+N, while the return of P in E100+N and E50A50 were higher than A100. The decomposition rate in A100 was slower than in the E50A50 and E100+N. The microbial activity, represented by soil enzyme activities (proteases and N-acetyl-beta-glucosaminidases), was consistently higher in E50A50 than in A100. The E50A50 presented a more balanced supply of N and P associated to a better structural quality of the litter for microbial metabolism, with synergic reflections on decomposition rates and release of nitrogen. (AU)

FAPESP's process: 10/16623-9 - Ecological intensification of eucalyptus plantations by association of nitrogen fixing leguminous tree species
Grantee:José Leonardo de Moraes Gonçalves
Support Opportunities: Research Projects - Thematic Grants