Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Drought tolerance of sugarcane propagules is improved when origin material faces water deficit

Full text
Author(s):
Marcos, Fernanda C. C. [1] ; Silveira, Neidiquele M. [2] ; Marchiori, Paulo E. R. [3] ; Machado, Eduardo C. [2] ; Souza, Gustavo M. [4] ; Landell, Marcos G. A. [5] ; Ribeiro, Rafael V. [1]
Total Authors: 7
Affiliation:
[1] Univ Campinas UNICAMP, Inst Biol, Dept Plant Biol, Lab Crop Physiol, Campinas, SP - Brazil
[2] Agron Inst IAC, Lab Plant Physiol Coaracy M Franco, Ctr Res & Dev Ecophysiol & Biophys, Campinas, SP - Brazil
[3] Fed Univ Lavras UFLA, Dept Biol, Lavras, MG - Brazil
[4] Fed Univ Pelotas UFPel, Inst Biol, Dept Bot, Pelotas, RS - Brazil
[5] IAC, Sugarcane Res Ctr, Ribeirao Preto, SP - Brazil
Total Affiliations: 5
Document type: Journal article
Source: PLoS One; v. 13, n. 12 DEC 26 2018.
Web of Science Citations: 3
Abstract

Drought stress can imprint marks in plants after a previous exposure, leading to plant acclimation and a permissive state that facilitates a more effective response to subsequent stress events. Such stress imprints would benefit plants obtained through vegetative propagation (propagules). Herein, our hypothesis was that the propagules obtained from plants previously exposed to water deficit would perform better under water deficit as compared to those obtained from plants that did not face stressful conditions. Sugarcane plants were grown under well-hydrated conditions or subjected to three cycles of water deficit by water withholding. Then, the propagules were subjected to water deficit. Leaf gas exchange was reduced under water deficit and the propagules from plants that experienced water deficit presented a faster recovery of CO2 assimilation and higher instantaneous carboxylation efficiency after rehydration as compared to the propagules from plants that never faced water deficit. The propagules from plants that faced water deficit also showed the highest leaf proline concentration under water deficit as well as higher leaf H2O2 concentration and leaf ascorbate peroxidase activity regardless of water regime. Under well-watered conditions, the propagules from plants that faced stressful conditions presented higher root H2O2 concentration and higher activity of catalase in roots as compared to the ones from plants that did not experience water shortage. Such physiological changes were associated with improvements in leaf area and shoot and root dry matter accumulation in propagules obtained from stressed plants. Our results suggest that root H2O2 concentration is a chemical signal associated with improved sugarcane performance under water deficit. Taken together, our findings bring a new perspective to the sugarcane production systems, in which plant acclimation can be explored for improving drought tolerance in rainfed areas. (AU)

FAPESP's process: 08/57495-3 - Integrating physiological, morphological and anatomical traits to understand the differential sucrose yield in sugarcane genotypes
Grantee:Eduardo Caruso Machado
Support Opportunities: Program for Research on Bioenergy (BIOEN) - Thematic Grants
FAPESP's process: 12/19167-0 - INVOLVEMENT OF NITRIC OXIDE ON PHYSIOLOGICAL RESPONSES IN PLANTS OF SUGARCANE UNDER WATER DEFICIT
Grantee:Neidiquele Maria Silveira
Support Opportunities: Scholarships in Brazil - Doctorate