Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Cell sheets of human dental pulp stem cells for future application in bone replacement

Full text
Author(s):
Fagundes Pedroni, Ana Clara [1] ; Sarra, Giovanna [1] ; de Oliveira, Natacha Kalline [2] ; Moreira, Maria Stella [2] ; Zindel Deboni, Maria Cristina [1] ; Marques, Marcia Martins [1]
Total Authors: 6
Affiliation:
[1] Univ Sao Paulo, Sch Dent, Dept Restorat Dent, Sao Paulo - Brazil
[2] Univ Sao Paulo, Sch Dent, Dept Maxillofacial Surg, Sao Paulo - Brazil
Total Affiliations: 2
Document type: Journal article
Source: CLINICAL ORAL INVESTIGATIONS; v. 23, n. 6, p. 2713-2721, JUN 2019.
Web of Science Citations: 4
Abstract

ObjectivesTo analyze the potential of human dental pulp stem cells (hDPSCs) for maintaining their undifferentiated status and osteogenic differentiation capacity when arranged in cell sheets (CSs) for future application in bone replacement.Materials and methodsCSs were formed after being induced for 10-15days by clonogenic medium containing additional vitamin C (20g/ml). The cell viability of hDPSC4s in the CSs was followed until 96h using the Live/Dead (R) assay. The cells of the CSs were enzymatically dissociated and then compared with the original hDPSC4s. The two cell types were characterized immunophenotypically by flow cytometry using specific mesenchymal stem cell-associated markers (CD105, CD146, CD44, STRO-1, and OCT3/4) and non-associated markers (CD34, CD45, and CD14). Osteogenic differentiation was analyzed with the Alizarin red assay.ResultsLiving cells were observed until 96h in the CSs. Both cell types exhibited osteogenic differentiation and expressed the specific undifferentiated MSC-associated markers. Cells spontaneously detached from the CSs attached and proliferated at the bottom of the culture dishes.ConclusionsCells in the hDPSC4s cell sheets survived for at least 96h. Moreover, the cells in the cell sheets retained their stemness and their osteogenic differentiation potential.Clinical relevanceCell sheets of hDPSCs could be employed as natural tri-dimensional structures for treating bone loss. This technique would be useful particularly for critical bone defects or any type of bone defects in patients carrying diseases that impair bone regeneration, such as diabetes mellitus, medication-related osteonecrosis of the jaw (MRONJ), and osteoporosis. (AU)

FAPESP's process: 17/16777-5 - Investigation of the effect of cell sheet of human dental pulp stem cells associated or not with biophotonics (photobiomodulation therapy and antimicrobial photodynamic therapy) on murine tissue regeneration
Grantee:Marcia Martins Marques
Support Opportunities: Regular Research Grants
FAPESP's process: 17/00760-6 - Effect of Cell Sheet of human dental pulp stem cell, associated or not with photobiomodulation therapy, on the regeneration of critical size bone defects in calvaria of rats with Type 2 Diabetes Mellitus
Grantee:Ana Clara Fagundes Pedroni
Support Opportunities: Scholarships in Brazil - Doctorate