Advanced search
Start date
Betweenand
Related content
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

WRONSKIANS OF FOURIER AND LAPLACE TRANSFORMS

Full text
Author(s):
Dimitrov, Dimitar K. [1] ; Xu, Yuan [2]
Total Authors: 2
Affiliation:
[1] Univ Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP - Brazil
[2] Univ Oregon, Dept Math, Eugene, OR 97403 - USA
Total Affiliations: 2
Document type: Journal article
Source: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY; v. 372, n. 6, p. 4107-4125, SEP 15 2019.
Web of Science Citations: 0
Abstract

Associated with a given suitable function, or a measure, on R, we introduce a correlation function so that the Wronskian of the Fourier transform of the function is the Fourier transform of the corresponding correlation function, and the same holds for the Laplace transform. We obtain two types of results. First, we show that Wronskians of the Fourier transform of a non-negative function on R are positive definite functions and that the Wronskians of the Laplace transform of a nonnegative function on R+ are completely monotone functions. Then we establish necessary and sufficient conditions in order that a real entire function, defined as a Fourier transform of a positive kernel K, belongs to the Laguerre-Polya class, which answers an old question of Polya. The characterization is given in terms of a density property of the correlation kernel related to K, via classical results of Laguerre and Jensen and employing Wiener's L-1 Tauberian theorem. As a consequence, we provide a necessary and sufficient condition for the Riemann hypothesis in terms of a density of the translations of the correlation function related to the Riemann xi-function. (AU)

FAPESP's process: 16/09906-0 - Harmonic analysis, approximation theory and applications
Grantee:Dimitar Kolev Dimitrov
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 14/08328-8 - Harmonic analysis and multivariate orthogonal polynomials
Grantee:Dimitar Kolev Dimitrov
Support Opportunities: Research Grants - Visiting Researcher Grant - International