Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Improved person re-identification based on saliency and semantic parsing with deep neural network models

Full text
Author(s):
Quispe, Rodolfo [1] ; Pedrini, Helio [1]
Total Authors: 2
Affiliation:
[1] Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: Image and Vision Computing; v. 92, DEC 2019.
Web of Science Citations: 0
Abstract

Given a video or an image of a person acquired from a camera, person re-identification is the process of retrieving all instances of the same person from videos or images taken from a different camera with non-overlapping view. This task has applications in various fields, such as surveillance, forensics, robotics, multimedia. In this paper, we present a novel framework, named Saliency-Semantic Parsing Re-Identification (SSP-RelD), for taking advantage of the capabilities of both clues: saliency and semantic parsing maps, to guide a backbone convolutional neural network (CNN) to learn complementary representations that improves the results over the original backbones. The insight of fusing multiple clues is based on specific scenarios in which one response is better than another, thus favoring the combination of them to increase performance. Due to its definition, our framework can be easily applied to a wide variety of networks and, in contrast to other competitive methods, our training process follows simple and standard protocols. We present extensive evaluation of our approach through five backbones and three benchmarks. Experimental results demonstrate the effectiveness of our person re-identification framework. In addition, we combine our framework with re-ranking techniques and compare it against state-of-the-art approaches, achieving competitive results. (C) 2019 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 17/12646-3 - Déjà vu: feature-space-time coherence from heterogeneous data for media integrity analytics and interpretation of events
Grantee:Anderson de Rezende Rocha
Support Opportunities: Research Projects - Thematic Grants