Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Li2O-doped MgAl2O4 nanopowders: Energetics of interface segregation

Full text
Author(s):
Bernardes, Andre A. [1] ; Caliman, Lorena B. [1] ; da Silva, Andre L. [1] ; Bettini, Jefferson [2] ; Guimaraes, Kleber L. [3] ; Gouvea, Douglas [1]
Total Authors: 6
Affiliation:
[1] Univ Sao Paulo, Dept Met & Mat Engn, Polytech Sch, BR-05508030 Sao Paulo, SP - Brazil
[2] Brazilian Nanotechnol Natl Lab LNNano, Campinas, SP - Brazil
[3] Inst Technol Res, Bionanomfg Ctr, Sao Paulo, SP - Brazil
Total Affiliations: 3
Document type: Journal article
Source: Journal of the American Ceramic Society; v. 103, n. 4 DEC 2019.
Web of Science Citations: 2
Abstract

Manufacturing nanoceramics is challenging owing to the instability of the grain size resulting from the high driving force toward growth associated with the interfaces. Nanometric ceramics of some oxides have exceptional mechanical and optical properties, eg, magnesium aluminate spinel (MgAl2O4). The production of these fully conformed ceramics requires a precursor powder, which generally contains sintering-promoting additives. Li salts are typically used as sintering promoters for MgAl2O4, but the interface stability associated with the segregation of the additive is poorly understood. In this study, MgAl2O4 samples containing 0-2.86 mol% Li ions were synthesized via a simultaneous-precipitation method in an ethylic medium and subsequently calcined at 800 degrees C in air. The nanopowders exhibited only the MgAl2O4 phase, and the crystallite size was determined by the Li2O concentration. The crystallite size was changed via the chemical modification of the interfaces by the segregation of Li ions. The solubility in the bulk material was very low at the fabrication temperature, and small amounts of Li ions saturated the bulk material and segregated to the grain boundaries (GBs), significantly stabilizing the grain-grain interface compared with the surface. The resulting powder was then aggregated further owing to the initial stage of sintering. The surface excess obtained via the selective lixiviation method confirmed that the segregation to the GBs was greater than that to the surface. Energetics calculations confirmed these results, indicating a high enthalpy of segregation at the GBs (Delta HGBsegr=-52.0kJ/mol) compared with that at the surfaces (Delta Hssegr=-31.5kJ/mol). The enthalpy of segregation together with the interface excess allowed us to estimate the reduction in the interface energy with Li+ segregation of 0.8% to the surface and 11.2% to the GBs. The Li+ segregation to the surfaces started by Al3+ substitution, and for powders with >= 1.8 mol% Li ions, Mg+2 was preferentially substituted at the surfaces. (AU)

FAPESP's process: 13/23209-2 - Ions segregation onto oxide nanopowders surfaces and the influence on the colloidal processing
Grantee:Douglas Gouvêa
Support Opportunities: Regular Research Grants
FAPESP's process: 14/50279-4 - Brasil Research Centre for Gas Innovation
Grantee:Julio Romano Meneghini
Support Opportunities: Research Grants - Research Centers in Engineering Program
FAPESP's process: 15/50443-1 - Interfaces in ceramic processing
Grantee:Douglas Gouvêa
Support Opportunities: Regular Research Grants