Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Wild antelope skeletal muscle antioxidant enzyme activities do not correlate with muscle fibre type or oxidative metabolism

Full text
Author(s):
Hohl, Rodrigo [1, 2] ; Blackhurst, Dee M. [3] ; Donaldson, Byron [1] ; van Boom, Kathryn M. [1] ; Kohn, Tertius A. [1, 4]
Total Authors: 5
Affiliation:
[1] Univ Cape Town, Dept Human Biol, Div Exercise Sci & Sports Med, Cape Town - South Africa
[2] Univ Fed Juiz de Fora, Inst Biol Sci, Dept Physiol, Juiz De Fora - Brazil
[3] Univ Cape Town, Div Chem Pathol, Dept Pathol, Cape Town - South Africa
[4] Univ Western Cape, Fac Nat Sci, Dept Med Biosci, Private Bag X17, ZA-7535 Bellville - South Africa
Total Affiliations: 4
Document type: Journal article
Source: COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY; v. 242, APR 2020.
Web of Science Citations: 0
Abstract

Wild antelope are some of the fastest land animals in the world, presenting with high oxidative and glycolytic skeletal muscle metabolism. However, no study has investigated their muscle antioxidant capacity, and may assist in understanding their physical ability and certain pathophysiological manifestations, such as capture myopathy. Therefore, the primary aim of this study was to determine the antioxidant activities superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR), as well as five key regulatory enzymes that serve as markers of glycolysis (phosphofructokinase (PFK) and lactate dehydrogenase (LDH)), the tricarboxylic acid cycle (citrate synthase (CS)), beta-oxidation (3-hydroxyacetyl CoA dehydrogenase (3HAD)) and the phosphagen pathway (creatine kinase (CK)), in the Vastus lateralis muscle of six southern African wild antelope species (mountain reedbuck, springbok, blesbok, fallow deer, black wildebeest and kudu). Four different muscle groups from laboratory rats served as reference values for the enzyme activities. SOD, CS and LDH activities were the highest in the wild antelope, whereas CK appeared highest in rat fast twitch muscles. Between the wild antelope species, differences exist for SOD, CAT, PFK, CK and LDH, but not for CS, 3HAD and GR. CAT and GR correlated positively only with type I fibres. No correlations could be found between muscle fibre type and the oxidative enzymes, CS and 3HAD, from the wild animals, concurring with previous studies on porcine and rats. However, wild antelope and rat muscle CK and SOD strongly correlated, hinting towards an antioxidant role for CK. (AU)