Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Immunomodulation by dimethyl fumarate treatment improves mouse sciatic nerve regeneration

Full text
Author(s):
Bombeiro, Andre Luis [1] ; Nunes Pereira, Bruna Toledo [1] ; Bonfanti, Amanda Pires [1] ; Rodrigues de Oliveira, Alexandre Leite [1]
Total Authors: 4
Affiliation:
[1] Univ Estadual Campinas, UNICAMP, Inst Biol, Dept Struct & Funct Biol, POB 6109, BR-13083970 Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: Brain Research Bulletin; v. 160, p. 24-32, JUL 2020.
Web of Science Citations: 0
Abstract

Traumatic injury to the peripheral nervous system (PNS) often generates sensorimotor deficits that impair the quality of life of the patient. The success of nerve regeneration is related to tissue clearance and the formation of a microenvironment that sustains and stimulates axon growth up to the target. In this sense, macrophages are important for axon and myelin debris removal, neovascularization and the production of neurotrophic factors. Macrophage activation is improved by T helper (Th) lymphocytes, whose role remains few explored upon traumatic nerve injuries. Dimethyl fumarate (DMF) is the first-line drug for the treatment of multiple sclerosis due to its neuroprotective, anti-inflammatory and immunomodulatory properties. DMF improves nerve regeneration via antioxidant and cytoprotective cell signaling pathways. However, the direct activity on the cell immune response following nerve axotomy requires further investigation. In the present study, we evaluated DMF activity on Th cells and macrophage polarization, axonal regeneration and motor recovery following sciatic nerve crush in mice. For this aim, operated animals received DMF or vehicle once a day, starting at 3 days postinjury (dpi). Using an in vivo cell migration assay, we observed reduced lymphocyte infiltration in the nerves of DMF-treated mice at 7 dpi. Flow cytometry revealed DMF-responsive lymphocyte polarization from the pro(Th1) to anti-inflammatory (Th2) phenotype at 7 dpi but not at 14 dpi. No effect was observed on macrophage polarization (from M1 to M2), although DMF reduced the frequency of the proinflammatory M1 subset from 7 to 14 dpi. Quantification of neurofilament (axon marker) and growth-associated protein 43 (GAP-43) immunolabeling showed improved axonal regeneration under DMF treatment at 14 dpi. Better motor recovery was observed in the DMF-treated group, as verified by an automated walking track test. Overall, our data reinforce the pro-regenerative capacity of DMF after traumatic nerve injury based on downmodulation of the proinflammatory immune response. (AU)

FAPESP's process: 18/05006-0 - Sensorimotor recovery following spinal root axotomy: use of different experimental approaches
Grantee:Alexandre Leite Rodrigues de Oliveira
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 14/06892-3 - Use of mesenchymal stem cells in the CNS/PNS interface: repair of proximal lesions
Grantee:Alexandre Leite Rodrigues de Oliveira
Support Opportunities: Research Projects - Thematic Grants