Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Saddle-curvature instability of lipid bilayer induced by amphipathic peptides: a molecular model

Full text
Author(s):
Downing, Rachel [1] ; Bossa, Guilherme Volpe [2] ; May, Sylvio [1]
Total Authors: 3
Affiliation:
[1] North Dakota State Univ, Dept Phys, Fargo, ND 58108 - USA
[2] Sao Paulo State Univ UNESP, Dept Phys, Inst Biosci Humanities & Exact Sci, BR-15054000 Sao Jose Do Rio Preto, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: SOFT MATTER; v. 16, n. 21, p. 5032-5043, JUN 7 2020.
Web of Science Citations: 1
Abstract

Amphipathic peptides that partition into lipid bilayers affect the curvature elastic properties of their host. Some of these peptides are able to shift the Gaussian modulus to positive values, thus triggering an instability with respect to the formation of saddle curvatures. To characterize the generic aspects of the underlying mechanism, we employ a molecular lipid model that accounts for the interfacial tension between the polar and apolar regions of the membrane, for interactions between the lipid headgroups, and for the energy to stretch or compress the hydrocarbon chains. Peptides are modeled as cylinders that partition into the host membrane in a parallel orientation where they diminish the space available to the lipid headgroups and chains. The penetration depth into the membrane is determined by the angular size of the peptide's hydrophilic region. We demonstrate that only peptides with a small angular size of their hydrophilic region have an intrinsic tendency to render the Gaussian modulus more positive, and we identify conditions at which the Gaussian modulus adopts a positive sign upon increasing the peptide concentration. Our model allows us to also incorporate electrostatic interactions between cationic peptides and anionic lipids on the level of the linear Debye-Huckel model. We show that electrostatic interactions tend to shift the Gaussian modulus toward more positive values. Steric and electrostatic lipid-peptide interactions jointly decrease the effective interaction strength in the headgroup region of the host membrane thus suggesting a generic mechanisms of how certain amphipathic peptides are able to induce the formation of saddle curvatures. (AU)

FAPESP's process: 17/21772-2 - Extensions of the Poisson-Boltzmann Theory to the study of the differential capacitance of an electrical double layer
Grantee:Guilherme Volpe Bossa
Support Opportunities: Scholarships in Brazil - Post-Doctoral