Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Enantioselective in vitro metabolism and in vitro-in vivo correlation of the herbicide ethofumesate in a human model

Full text
Author(s):
Perovani, Icaro Salgado [1] ; Moraes de Oliveira, Anderson Rodrigo [1]
Total Authors: 2
Affiliation:
[1] Univ Sao Paulo, Dept Quim, Fac Filosofia Ciencias & Letras Ribeirao Preto, Av Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: Journal of Pharmaceutical and Biomedical Analysis; v. 187, AUG 5 2020.
Web of Science Citations: 0
Abstract

Ethofumesate (ETO) is a chiral herbicide that is marketed as a racemic mixture in the European Union and the United States. The growing consumption of pesticides in the world, along with their presence in water and food, has increased human exposure to these chemicals. Another issue concerning these compounds is that each enantiomer of a chiral pesticide may interact with biomolecules differently. For this reason, this study aimed to investigate the in vitro metabolism of ethofumesate (the racemic mixture as well as the isolated enantiomers) by human liver microsomes (HLM) and to explore the in vitro-in vivo correlation. Before the kinetics was determined, the method was fully validated by evaluating its selectivity, linearity, precision, accuracy, carryover, and stability. All the evaluated parameters agreed with the European Medicines Agency guideline. The enzyme kinetic parameters and the in vitro-in vivo correlation demonstrated that there was no enantioselective difference for the metabolism and bioavailable fraction of each enantiomer. The enzyme kinetics was biphasic; the K-M1 values were 15, 5.8, and 5.6 for rac-ETO, (+)-ETO, and (-)-ETO, respectively. The total in vitro intrinsic clearance was 0.10 mgmL min(-1) mg(-1) for rac-ETO and its enantiomers. The enantiomer (-)-ETO was only metabolized by CYP2C19, while (+)-ETO was metabolized by both CYP2C19 and CYP3A4. CYP2C19 polymorphism and/or inhibition may represent a risk for humans exposed to this pesticide. (C) 2020 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 14/50945-4 - INCT 2014: National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies
Grantee:Maria Valnice Boldrin
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 18/07534-4 - Development of chromatographic / electrophoretic methods to be further applied in in vitro enzymatic inhibition studies and prediction of drug interactions of chiral pesticides - Phase 2
Grantee:Anderson Rodrigo Moraes de Oliveira
Support Opportunities: Regular Research Grants