Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Optimization of the Reaction Conditions for the Synthesis of Dihydrobenzofuran Neolignans

Full text
Author(s):
Dias, Herbert J. [1] ; Rodrigues, Matheus L. [1] ; Crotti, Antonio E. M. [1]
Total Authors: 3
Affiliation:
[1] Univ Sao Paulo, Dept Quim, Fac Filosofia Ciencias & Letras Ribeirao Preto, Av Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: Journal of the Brazilian Chemical Society; v. 32, n. 1, p. 20-28, JUL 2021.
Web of Science Citations: 0
Abstract

We have optimized the experimental conditions for the silver(I)-promoted oxidative coupling of methyl p-coumarate (I) and methyl ferulate (II), which is the most frequently used methodology to synthesize the bioactive dihydrobenzofuran neolignans 1 ((±)-trans-dehydrodicoumarate dimethyl ester) and 2 ((±)-trans-dehydrodiferulate dimethyl ester). Most of the tested conditions affected the conversion (i.e., the consumption of I and II) and the selectivity (i.e., the percentage of I and II that was converted into 1 and 2, respectively), so the optimized conditions were the ones that afforded the best balance between conversion and selectivity. Silver(I) oxide (0.5 equiv.) is the most efficient oxidant agent amongst the silver(I) reagents that were tested to convert methyl esters I and II into compounds 1 and 2, respectively. Acetonitrile, which has not yet been reported as a solvent for this reaction, provided the best balance between conversion and selectivity, besides being “greener” than other solvents that are more often employed (e.g., dichloromethane and benzene). Under the optimized conditions, the reaction time decreased from 20 to 4 h without significantly impacting the conversion and selectivity. (AU)

FAPESP's process: 13/20094-0 - Evaluation of the anti-parasitary and insecticidal activities of benzofuran derivatives, and study of their gas-phase fragmentation reactions using tandem mass spectrometry
Grantee:Antônio Eduardo Miller Crotti
Support Opportunities: Regular Research Grants