Full text | |
Author(s): |
Total Authors: 2
|
Affiliation: | [1] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas IGCE, Av 24A, 1515 Bela Vista, BR-13506900 Rio Claro, SP - Brazil
[2] Bates Coll, Dept Math, Lewiston, ME 04240 - USA
Total Affiliations: 2
|
Document type: | Journal article |
Source: | TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS; v. 56, n. 2, p. 483-499, DEC 2020. |
Web of Science Citations: | 0 |
Abstract | |
Let f(1), . . ., f(k) : M -> N be maps between closed manifolds, N(f(1), . . ., f(k)) and R(f(1), . . ., f(k)) be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate R(f(1), . . ., f(k)) with R(f(1), f(2)), . . .,R(f(1), f(k)). When N is a torus or a nilmanifold, we compute R(f(1), . . ., f(k)) which, in these cases, is equal to N(f(1), . . ., f(k)). (AU) | |
FAPESP's process: | 18/03550-5 - Computational aspects of the Lefschetz, Nielsen and Reidemeister numbers for multiple maps. |
Grantee: | Thaís Fernanda Mendes Monis |
Support Opportunities: | Regular Research Grants |