Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

The effects of pain and a secondary task on postural sway during standing

Full text
Author(s):
Hirata, Rogerio Pessoto [1] ; Thomsen, Mikkel Jacobi [1] ; Larsen, Frederik Greve [1] ; Stottrup, Nicolai [1] ; Duarte, Marcos [2]
Total Authors: 5
Affiliation:
[1] Aalborg Univ, Dept Hlth Sci & Technol, Sport Sci Performance & Technol, Niels Jernes Vej 12, DK-9220 Aalborg - Denmark
[2] Fed Univ ABC, Biomed Engn, Sao Bernardo Do Campo, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: HUMAN MOVEMENT SCIENCE; v. 79, OCT 2021.
Web of Science Citations: 0
Abstract

Background: Pain impairs available cognitive resources and somatosensory information, but its effects on postural control during standing are inconclusive. The aim of this study was to investigate whether postural sway is affected by the presence of pain and a secondary task during standing. Methods: Sixteen healthy subjects stood as quiet as possible at a tandem stance for 30s on a force platform at different conditions regarding the presence of pain and a secondary task. Subjects received painful stimulations on the right upper arm or lower leg according to a relative pain threshold {[}pain 7 out 10 on a Visual Analog Scale (VAS) - 0 representing ``no pain{''} and 10 ``worst pain imaginable{''}] using a computer pressurized cuff. The secondary task consisted of pointing to a target using a head-mounted laser-pointer as visual feedback. Center of Pressure (COP) sway area, velocity, mean frequency and sample entropy were calculated from force platform measures. Findings: Compared to no painful condition, pain intensity (leg: VAS = 7; arm VAS = 7.4) increased following cuff pressure conditions (P < .01). Pain at the leg decreased COP area (P < .05), increased COP velocity (P < .05), mean frequency (P < .05) and sample entropy (P < .05) compared with baseline condition regardless the completion of the secondary task. During condition with pain at the leg, completion of the secondary task reduced COP velocity (P < .001) compared with condition without secondary task. Interpretation: Pain in the arm did not affect postural sway. Rather, postural adaptations seem dependent on the location of pain as pain in the lower leg affected postural sway. The completion of a secondary task affected postural sway measurements and reduced the effect of leg pain on postural sway. Future treatment interventions could benefit from dual-task paradigm during balance training aiming to improve postural control in patients suffering from chronic pain. (AU)

FAPESP's process: 15/14810-0 - Biomechanical and functional aspects of the musculoskeletal system of runners: chronic effects of therapeutic exercise and aging
Grantee:Isabel de Camargo Neves Sacco
Support Opportunities: Research Projects - Thematic Grants