Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Biosorption of rare-earth and toxic metals from aqueous medium using different alternative biosorbents: evaluation of metallic affinity

Full text
Author(s):
da Costa, Talles Barcelos [1] ; Carlos da Silva, Meuris Gurgel [1] ; Adeodato Vieira, Melissa Gurgel [1]
Total Authors: 3
Affiliation:
[1] Univ Estadual Campinas, Sch Chem Engn, Albert Einstein Ave, BR-13083852 Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: Environmental Science and Pollution Research; SEP 2021.
Web of Science Citations: 0
Abstract

Currently, the world faces difficulties related to the quantity and quality of water because of industrial expansion, population growth, and urbanization intensification. Biosorption is considered a promising technology that can be applied to remove toxic metals (TMs) and rare-earth metals (REMs) in wastewater at low concentrations, due to its efficiency and low cost. In this work, we investigated different non-conventional biosorbents to remove metallic ions (TMs and REMs) in biosorptive affinity tests. Metallic affinity assays among lanthanum and different biosorbents showed that greater affinities were found for sericin-alginate beads crosslinked with polyvinyl alcohol (SAPVA) (0.280 mmol/g) and polyethylene glycol diglycidyl ether (SAPEG) (0.277 mmol/g), expanded vermiculite (0.281 mmol/g), Sargassum filipendula seaweed (0.287 mmol/g), and seaweed biomass waste (0.289 mmol/g). Among the biosorbents evaluated, SAPVA and SAPEG beads, besides to sericin-alginate beads crosslinked with proanthocyanidins (SAPAs) were selected for affinity assays with other REMs and TMs. Compared to other particles, SAPVA beads showed higher potential for biosorption by REMs with the following order of affinity: Yb3+ > Dy3+ > Nd3+ > Ce3+ > La3+. Additionally, the biosorptive affinity of TMs by SAPVA beads followed the order: Al3+ > Cr3+ > Pb2+ > Cu2+ > Cd2+ > Zn2+ > Ni2+. (AU)

FAPESP's process: 19/11353-8 - Brazilian Water Research Center (BWRC)
Grantee:Lauro Tatsuo Kubota
Support Opportunities: Research Grants - Research Centers in Engineering Program
FAPESP's process: 17/18236-1 - RECOVERY OF NOBLE METALLIC IONS AND RARE-EARTH IONS FROM AQUEOUS SOLUTIONS BY BIOADSORTION IN PARTICLES PRODUCED FROM SERICINE AND ALGINATE BLENDS
Grantee:Melissa Gurgel Adeodato Vieira
Support Opportunities: Regular Research Grants