| Full text | |
| Author(s): |
de Almeida, Juliana
;
Kaminagakura, Verena Mandorino
;
Felez, Marissol Rodrigues
;
de Leon, Carlos Ponce
;
Bertazzoli, Rodnei
;
Rodrigues, Christiane de Arruda
Total Authors: 6
|
| Document type: | Journal article |
| Source: | JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING; v. 10, n. 3, p. 18-pg., 2022-06-01. |
| Abstract | |
To evaluate the tungsten content on the photoelectrocatalytic properties of self-organized nanotubes grown by anodization on Ti-xW (wt%) alloys, where x is 0.5, 2.5 or 5.0, this work investigated the phase transformation of TiO2, the tungsten oxidation states in the oxide layers and their photoelectrocatalytic performance in the degradation of estrone (E1) and 17 alpha-ethinylestradiol (EE2). These films were employed in photocatalytic and photoelectrocatalytic removals of hormones from synthetic and real water matrices. In synthetic water, E1 and EE2 removals, reached efficiencies of 92% and 71%, respectively, after 2 min under UV-Vis photoelectrocatalysis using NT/Ti-5.0W as catalyst. About 30 times longer was needed to degrade 77% of both hormones from the real water matrix due to the presence of other high organic charge. The high performance of the NT/Ti-5.0W was associated with the combination of doping (W-doped TiO2) and WO3 (W6+) heterojunction. However, this electrode had its stability compromised under long degradation times, mainly under visible light, due to a WO3 leaching process. As for NT/Ti-0.5W, the substitutional W-doped TiO2 contributed to its greater stability and efficiency for a long time. The low performance of NT/Ti-2.5W was justified by high density of oxygen vacancy and unfavorable position of its adsorption bands. (AU) | |
| FAPESP's process: | 14/50945-4 - INCT 2014: National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies |
| Grantee: | Maria Valnice Boldrin |
| Support Opportunities: | Research Projects - Thematic Grants |
| FAPESP's process: | 06/61261-2 - Degradação de compósitos orgânicos fotocatálise heterogênea e fotoeletrocatálise empregando óxidos nanoestruturados como material catalítico |
| Grantee: | Christiane de Arruda Rodrigues |
| Support Opportunities: | Research Grants - Young Investigators Grants |