Advanced search
Start date
Betweenand


Barrett's Esophagus Identification Using Color Co-occurrence Matrices

Full text
Author(s):
de Souza, Luis A., Jr. ; Ebigbo, Alanna ; Probst, Andreas ; Messmann, Helmut ; Papa, Joao P. ; Mendel, Robert ; Palm, Christoph ; IEEE
Total Authors: 8
Document type: Journal article
Source: PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI); v. N/A, p. 8-pg., 2018-01-01.
Abstract

In this work, we propose the use of single channel Color Co-occurrence Matrices for texture description of Barrett's Esophagus (BE) and adenocarcinoma images. Further classification using supervised learning techniques, such as Optimum-Path Forest (OPF), Support Vector Machines with Radial Basis Function (SVM-RBF) and Bayesian classifier supports the context of automatic BE and adenocarcinoma diagnosis. We validated three approaches of classification based on patches, patients and images in two datasets (MICCAI 2015 and Augsburg) using the color-and-texture descriptors and the machine learning techniques. Concerning MICCAI 2015 dataset, the best results were obtained using the blue channel for the descriptors and the supervised OPF for classification purposes in the patch-based approach, with sensitivity nearly to 73% for positive adenocarcinoma identification and specificity close to 77% for BE (non-cancerous) patch classification. Regarding the Augsburg dataset, the most accurate results were also obtained using both OPF classifier and blue channel descriptor for the feature extraction, with sensitivity close to 67% and specificity around to 76%. Our work highlights new advances in the related research area and provides a promising technique that combines color and texture information, allied to three different approaches of dataset pre-processing aiming to configure robust scenarios for the classification step. (AU)

FAPESP's process: 13/07375-0 - CeMEAI - Center for Mathematical Sciences Applied to Industry
Grantee:Francisco Louzada Neto
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 16/19403-6 - Energy-based learning models and their applications
Grantee:João Paulo Papa
Support Opportunities: Regular Research Grants
FAPESP's process: 14/12236-1 - AnImaLS: Annotation of Images in Large Scale: what can machines and specialists learn from interaction?
Grantee:Alexandre Xavier Falcão
Support Opportunities: Research Projects - Thematic Grants