Advanced search
Start date
Betweenand


Faster alpha-expansion via dynamic programming and image partitioning

Full text
Author(s):
Fontinele, Jefferson ; Mendonca, Marcelo ; Ruiz, Marco ; Papa, Joao ; Oliveira, Luciano ; IEEE
Total Authors: 6
Document type: Journal article
Source: 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN); v. N/A, p. 8-pg., 2020-01-01.
Abstract

Image segmentation is the task of assigning a label to each image pixel. When the number of labels is greater than two (multi-label) the segmentation can be modelled as a multi-cut problem in graphs. In the general case, finding the minimum cut in a graph is an NP-hard problem, in which improving the results concerning time and quality is a major challenge. This paper addresses the multi-label problem applied in interactive image segmentation. The proposed approach makes use of dynamic programming to initialize an alpha-expansion, thus reducing its runtime, while keeping the Dice-score measure in an interactive segmentation task. Over BSDS data set, the proposed algorithm was approximately 51.2% faster than its standard counterpart, 36.2% faster than Fast Primal-Dual (FastPD) and 10.5 times faster than quadratic pseudo-boolean optimization (QBPO) optimizers, while preserving the same segmentation quality. (AU)

FAPESP's process: 13/07375-0 - CeMEAI - Center for Mathematical Sciences Applied to Industry
Grantee:Francisco Louzada Neto
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 14/12236-1 - AnImaLS: Annotation of Images in Large Scale: what can machines and specialists learn from interaction?
Grantee:Alexandre Xavier Falcão
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 17/25908-6 - Weakly supervised learning for compressed video analysis on retrieval and classification tasks for visual alert
Grantee:João Paulo Papa
Support Opportunities: Research Grants - Research Partnership for Technological Innovation - PITE