Advanced search
Start date
Betweenand


Evaluating Content Features and Classification Methods for Helpfulness Prediction of Online Reviews: Establishing a Benchmark for Portuguese

Author(s):
de Sousa, Rogerio Figueredo ; Salgueiro Pardo, Thiago Alexandre ; Assoc Computat Linguist
Total Authors: 3
Document type: Journal article
Source: PROCEEDINGS OF THE 12TH WORKSHOP ON COMPUTATIONAL APPROACHES TO SUBJECTIVITY, SENTIMENT & SOCIAL MEDIA ANALYSIS; v. N/A, p. 10-pg., 2022-01-01.
Abstract

Over the years, the review helpfulness prediction task has been the subject of several works, but remains being a challenging issue in Natural Language Processing, as results vary a lot depending on the domain, on the adopted features and on the chosen classification strategy. This paper attempts to evaluate the impact of content features and classification methods for two different domains. In particular, we run our experiments for a low resource language - Portuguese -, trying to establish a benchmark for this language. We show that simple features and classical classification methods are powerful for the task of helpfulness prediction, but are largely outperformed by a convolutional neural network-based solution. (AU)

FAPESP's process: 19/07665-4 - Center for Artificial Intelligence
Grantee:Fabio Gagliardi Cozman
Support Opportunities: Research Grants - Research Program in eScience and Data Science - Research Centers in Engineering Program