Advanced search
Start date
Betweenand


Nanocarrier-Mediated Delivery of miRNA, RNAi, and CRISPR-Cas for Plant Protection: Current Trends and Future Directions

Full text
Author(s):
Show less -
Mujtaba, Muhammad ; Wang, Depeng ; Carvalho, Lucas Braganca ; Oliveira, Jhones Luiz ; Santo Pereira, Anderson do Espirito ; Sharif, Rahat ; Jogaiah, Sudisha ; Paidi, Murali Krishna ; Wang, Lichen ; Ali, Qasid ; Fraceto, Leonardo Fernandes
Total Authors: 11
Document type: Journal article
Source: ACS AGRICULTURAL SCIENCE & TECHNOLOGY; v. 1, n. 5, p. 19-pg., 2021-10-18.
Abstract

Current trends in plant genetic transformation technologies, i.e., designing and applying molecules like miRNA, RNAi, and CRISPR-Cas, largely enable researchers to target specific sites in the plant genome to avert the growing biotic and abiotic threats to plants. However, the delivery of these molecules through conventional techniques brings an array of drawbacks such as low efficiency due to the cell wall barrier, tissue damage that leads to browning or necrosis, degradation of these biomolecules by physiological conditions (high temperature, harsh pH, and light), and plant-specific protocols. The advancements in nanotechnology offer an excellent alternative for the safe and highly efficient delivery of biomolecules such as miRNA, CRISPR-Cas, and RNAi without damaging the plant tissues. Nanoparticle (polymeric, metallic, magnetic, silica, carbon, etc.)-based delivery of biomolecules can be efficiently utilized especially for plant protection applications. Herein, we present a comprehensive overview of current trends (with a focus on the previous five years) in nanoparticle-based delivery of miRNA, RNAi, CRISPR-Cas and simillar biomolecules for plant protection applications. In addition, a future perspective focuses on the research gaps and unexplored potentials of nanoparticles for the delivery of biomolecules. (AU)

FAPESP's process: 17/21004-5 - Agriculture, micro/nanotechnology and environment: from evaluation of the mechanisms of action to studies of transport and toxicity
Grantee:Leonardo Fernandes Fraceto
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 18/21142-1 - Encapsulation of Bacillus thuringiensis (Bacillales: Bacillaceae) in polymeric microparticles and association with nanoencapsulated chemical agent: evaluation of biological activity and mechanisms of action
Grantee:Jhones Luiz de Oliveira
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 18/23608-8 - Development of labelled nanopesticides aiming studies of mechanism of action and toxicity
Grantee:Lucas Bragança de Carvalho
Support Opportunities: Scholarships in Brazil - Post-Doctoral