Advanced search
Start date
Betweenand


Reversal and Indel Distance With Intergenic Region Information

Full text
Author(s):
Alexandrino, Alexsandro Oliveira ; Brito, Klairton Lima ; Oliveira, Andre Rodrigues ; Dias, Ulisses ; Dias, Zanoni
Total Authors: 5
Document type: Journal article
Source: IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS; v. 20, n. 3, p. 13-pg., 2023-05-01.
Abstract

Recent works on genome rearrangements have shown that incorporating intergenic region information along with gene order in models provides better estimations for the rearrangement distance than using gene order alone. The reversal distance is one of the main problems in genome rearrangements. It has a polynomial time algorithm when only gene order is used to model genomes, assuming that repeated genes do not exist and that gene orientation is known, even when the genomes have distinct gene sets. The reversal distance is NP-hard and has a 2-approximation algorithm when incorporating intergenic regions. However, the problem has only been studied assuming genomes with the same set of genes. In this work, we consider the variation that incorporates intergenic regions and that allows genomes to have distinct sets of genes, a scenario that leads us to include indels operations (insertions and deletions). We present a 2.5-approximation algorithm using the labeled intergenic breakpoint graph, which is based on the well-known breakpoint graph structure. We also present an experimental analysis of the proposed algorithm using simulated data, which showed that the practical approximation factor is considerably less than 2.5. Furthermore, we used the algorithm in real genomes to construct a phylogenetic tree. (AU)

FAPESP's process: 13/08293-7 - CCES - Center for Computational Engineering and Sciences
Grantee:Munir Salomao Skaf
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 19/27331-3 - Sorting by genome rearrangements problems
Grantee:André Rodrigues Oliveira
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 15/11937-9 - Investigation of hard problems from the algorithmic and structural stand points
Grantee:Flávio Keidi Miyazawa
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 17/12646-3 - Déjà vu: feature-space-time coherence from heterogeneous data for media integrity analytics and interpretation of events
Grantee:Anderson de Rezende Rocha
Support Opportunities: Research Projects - Thematic Grants