Advanced search
Start date
Betweenand


Electrochemical Nanomaterial-based Sensors/Biosensors for Drug Monitoring

Full text
Author(s):
Negahdary, Masoud ; Barros Azeredo, Nathalia Florencia ; Santos, Berlane Gomes ; de Oliveira, Thawan Gomes ; de Oliveira Lins, Renato Soares ; dos Santos Lima, Irlan ; Angnes, Lucio
Total Authors: 7
Document type: Journal article
Source: CURRENT TOPICS IN MEDICINAL CHEMISTRY; v. 23, n. 4, p. 21-pg., 2023-01-01.
Abstract

Determining the amount of medication used is essential for correctly managing treatment systems. The unauthorized use of drugs and the importance of determining the absorbed and required dose of drugs in target organs are essential factors that justify the design of new drug monitoring systems. Electrochemical sensors and biosensors based on nanomaterials have been developed for drug monitoring in the past few years. The use of nanomaterials to optimize the analyte detection process and facilitate electron transfer in electrochemical processes has enhanced intermolecular interactions and increased diagnostic sensitivity. Considering this review, in the first part, the evaluation of cancer drugs is examined, which can be used to determine the exact dose of the drug required in different stages of cancer. Accurate monitoring of cancer drugs can increase patient life expectancy, reduce side effects, and increase economic savings. In the next section, sensors and biosensors designed for antibiotics are examined. Accurate measurement of antibiotics for determining the effectiveness of the dose in controlling infections and preventing antibiotic resistance is possible with the help of these drug diagnostic platforms. In the next part, the diagnosis of different hormones is considered. Abnormal amounts (low/high) of hormones cause multiple physiological complications and various disabilities. Therefore, accurate determination of hormone levels can effectively treat hormonal changes. In the last section, other drugs, including drugs and analgesics for which the use of electrochemical diagnostic platforms can significantly help drug distribution and social health systems, are also discussed. (AU)

FAPESP's process: 19/22126-2 - Electrochemical behavior of carbonic acid hemiesters in aqueous medium
Grantee:Berlane Gomes Santos
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 19/27021-4 - Design and fabrication of electrochemical biosensors for early diagnosis of myocardial infarction and Hepatocellular Carcinoma using microRNAs (miRNAs) primers as biorecognition element and arrays of gold nanostructures
Grantee:Masoud Negahdary
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 17/13137-5 - Formation and properties of hemiesters of carbonic acid in aqueous medium
Grantee:Claudimir Lucio Do Lago
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 14/50867-3 - INCT 2014: National Institute of Science and Technology in Bioanalysis
Grantee:Marco Aurelio Zezzi Arruda
Support Opportunities: Research Projects - Thematic Grants