Advanced search
Start date
Betweenand


Undesirable effects of chemical inhibitors of NAD(P)(+) transhydrogenase on mitochondrial respiratory function

Full text
Author(s):
Bicego, Rafaela ; Francisco, Annelise ; Ruas, Juliana S. ; Siqueira-Santos, Edilene S. ; Castilho, Roger F.
Total Authors: 5
Document type: Journal article
Source: Archives of Biochemistry and Biophysics; v. 692, p. 12-pg., 2020-10-15.
Abstract

NAD(P)(+) transhydrogenase (NNT) is located in the inner mitochondrial membrane and catalyzes a reversible hydride transfer between NAD(H) and NADP(H) that is coupled to proton translocation between the intermembrane space and mitochondrial matrix. NNT activity has an essential role in maintaining the NADPH supply for antioxidant defense and biosynthetic pathways. In the present report, we evaluated the effects of chemical compounds used as inhibitors of NNT over the last five decades, namely, 4-chloro-7-nitrobenzofurazan (NBD-Cl), N,N'-dicyclohexylcarbodiimide (DCC), palmitoyl-CoA, palmitoyl-L-carnitine, and rhein, on NNT activity and mitochondrial respiratory function. Concentrations of these compounds that partially inhibited the forward and reverse NNT reactions in detergent-solubilized mouse liver mitochondria significantly impaired mitochondrial respiratory function, as estimated by ADP-stimulated and nonphosphorylating respiration. Among the tested compounds, NBD-Cl showed the best relationship between NNT inhibition and low impact on respiratory function. Despite this, NBD-Cl concentrations that partially inhibited NNT activity impaired mitochondrial respiratory function and significantly decreased the viability of cultured Nnt(-/-) mouse astrocytes. We conclude that even though the tested compounds indeed presented inhibitory effects on NNT activity, at effective concentrations, they cause important undesirable effects on mitochondrial respiratory function and cell viability. (AU)

FAPESP's process: 17/17728-8 - Mitochondrial function and dysfunction: implications for aging and associated diseases
Grantee:Aníbal Eugênio Vercesi
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 20/05202-4 - The role of mitochondrial NAD(P)+ transhydrogenase in monoaminergic neurotransmission and neurodegeneration in mice
Grantee:Annelise Francisco
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 15/22063-0 - Antioxidant Role of the Nicotinamide Nucleotide Transhydrogenase (NNT) in the Central Nervous System - Morphofunctional characterization in control mice and spontaneously Nnt gene mutant mice.
Grantee:Annelise Francisco
Support Opportunities: Scholarships in Brazil - Doctorate