Advanced search
Start date
Betweenand


Unveiling the formation capacity of multicomponent oleogels: Performance of lecithin interacting with monostearate derivatives

Full text
Author(s):
Barroso, Noadia Genuario ; Okuro, Paula Kiyomi ; Cerqueira, Miguel Angelo Parente Ribeiro ; Cunha, Rosiane Lopes
Total Authors: 4
Document type: Journal article
Source: Food Research International; v. 187, p. 16-pg., 2024-04-29.
Abstract

Oleogels have been explored as fat substitutes due to their healthier composition compared to trans and saturated fats, also presenting interesting technological perspectives. The aim of this study was to investigate the compositional perspective of multicomponent oleogels. Structuring ability of lecithin (LEC) (20 or 90 wt% of phosphatidylcholine - PC) combined with glycerol monostearate (GMS), sorbitan monostearate (SMS) or sucrose monostearate (SAC) in sunflower oil was evaluated from oleogels properties. The thermal and rheological properties, microstructure and stability of the oleogels were affected by the difference in the chemical composition of LEC and the ratio between LEC and different surfactants. Interestingly, low-phosphatidylcholine LEC (L20) performed better, although systems formed with reduced amounts of LEC tended to be softer (LEC-GMS) and present high oil holding capacity (LEC-SMS). The mixtures of LEC and monostearate-based surfactants showed different behaviors, depending on the surfactant polar head. In LEC-GMS systems, LEC hindered the selfassembly of GMS in sunflower oil, compromising mechanical properties and increasing oil release. When combined with SMS, LEC acted as a crystal habit modifier of SMS, forming a more homogeneous microstructure and producing stronger oleogels with greater oil binding capacity. However, above the threshold concentration, LEC prevented SMS self-assembly, resulting in a weaker gel. A positive interaction was found in LEC-SAC formulations in specific ratios, since SAC cannot act as a single oleogelator. Results show the impact of solubility balance played by LEC and fatty-acid derivatives surfactant when combined and used as oleogelators. This knowledge can contribute to a rational perspective in the preparation and modulation of the properties of edible oleogels. (AU)

FAPESP's process: 19/27354-3 - Architecture of colloidal delivery systems: what is the role of structure on the digestibility?
Grantee:Rosiane Lopes da Cunha
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 19/26046-3 - Investigation of high internal phase emulsions-HIPEs as strategy design to tailor in vitro lipid digestion and bioaccessibility of bioactive compound
Grantee:Paula Kiyomi Okuro
Support Opportunities: Scholarships abroad - Research Internship - Post-doctor
FAPESP's process: 18/20308-3 - Designing oil structured colloidal systems towards enhanced bioavailability of bioactive compounds on in vitro digestibility behavior
Grantee:Paula Kiyomi Okuro
Support Opportunities: Scholarships in Brazil - Post-Doctoral