Advanced search
Start date
Betweenand


Towards global long-term water transparency products from the Landsat archive

Full text
Author(s):
Maciel, Daniel A. ; Pahlevan, Nima ; Barbosa, Claudio C. F. ; Martins, Vitor S. ; Smith, Brandon ; O'Shea, Ryan E. ; Balasubramanian, Sundarabalan, V ; Saranathan, Arun M. ; Novo, Evlyn M. L. M.
Total Authors: 9
Document type: Journal article
Source: REMOTE SENSING OF ENVIRONMENT; v. 299, p. 18-pg., 2023-11-01.
Abstract

Secchi Disk Depth (Z(sd)) is one of the most fundamental and widely used water-quality indicators quantifiable via optical remote sensing. Despite decades of research, development, and demonstrations, currently, there is no operational model that enables the retrieval of Z(sd) from the rich archive of Landsat, the long-standing civilian Earth-observation program (1972 - present). Devising a robust Z(sd) model requires a comprehensive in situ dataset for testing and validation, enabling consistent mapping across optically varying global aquatic ecosystems. This study utilizes Mixture Density Networks (MDNs) trained with a large in situ dataset (N = 5689) from 300+ water bodies to formulate and implement a global Z(sd) algorithm for Landsat sensors, including the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) aboard Landsat-5, -7, -8, and -9, respectively. Through an extensive Monte Carlo cross-validation with in situ data, we showed that MDNs improved Z(sd) retrieval when compared to other commonly used machine-learning (ML) models and recently developed semi-analytical algorithms, achieving a median symmetric accuracy (epsilon) of similar to 29% and median bias (beta) of similar to 3%). A fully trained MDN model was then applied to atmospherically corrected Landsat data (i.e., remote sensing reflectance; R-rs) to both further validate our MDN-estimated Z(sd) products using an independent global satellite-to-in situ matchup dataset (N = 3534) and to demonstrate their utility in time-series analyses (1984 - present) via selected lakes and coastal estuaries. The quality of R-rs products rigorously assessed for the Landsat sensors indicated sensor-/band-dependent epsilon ranging from 8% to 37%. For our Z(sd) products, we found epsilon similar to 39% and beta similar to 8% for the Landsat-8/OLI matchups. We observed higher errors and biases for TM and ETM+, which are explained by uncertainties in R-rs products induced by uncertainties in atmospheric correction and instrument calibration. Once these sources of uncertainty are, to the extent possible, characterized and accounted for, our developed model can then be employed to evaluate long-term trends in water transparency across unprecedented spatiotemporal scales, particularly in poorly studied regions of the world in a consistent manner. (AU)

FAPESP's process: 03/06999-8 - Study of the dynamics of water circulation between lotic, lentic systems and the floodplain
Grantee:Evlyn Márcia Leão de Moraes Novo
Support Opportunities: Regular Research Grants
FAPESP's process: 11/23594-8 - Remote sensing applications for modeling human impacts on the ecological properties of wetland and aquatic environments in the Solimões/Amazon floodplain
Grantee:Evlyn Márcia Leão de Moraes Novo
Support Opportunities: Regular Research Grants
FAPESP's process: 13/09045-7 - Submersed aquatic vegetation - SAV mapping based on radiative transfer theory - RTT in water bodies
Grantee:Nilton Nobuhiro Imai
Support Opportunities: Regular Research Grants
FAPESP's process: 20/14613-8 - Development of a modular system for continuous monitoring of inland water quality by satellite - MAPAQUALI
Grantee:Cláudio Clemente Faria Barbosa
Support Opportunities: Regular Research Grants
FAPESP's process: 18/12083-1 - Balancing biodiversity conservation with development in Amazon wetlands - bonds
Grantee:Evlyn Márcia Leão de Moraes Novo
Support Opportunities: Regular Research Grants
FAPESP's process: 14/23903-9 - Bio-optical spatio-temporal characterization and development of analytical algorithms for the systematic monitoring of water masses circulating on the floodplain of medium and lower Amazon
Grantee:Cláudio Clemente Faria Barbosa
Support Opportunities: Regular Research Grants
FAPESP's process: 11/19523-8 - Developing a semi-analytical model to study the chlorophyll-a concentration and the trophic state of tropical hydroelectric reservoirs
Grantee:José Luiz Stech
Support Opportunities: Regular Research Grants
FAPESP's process: 12/19821-1 - Bio-optical model parametrization to study the chlorophyll-A concentration along a cascade of reservoirs
Grantee:Enner Herenio de Alcântara
Support Opportunities: Regular Research Grants
FAPESP's process: 08/56252-0 - Environmental and socioeconomic impacts associated with the production and consumption of sugarcane ethanol in south central Brazil
Grantee:Evlyn Márcia Leão de Moraes Novo
Support Opportunities: Program for Research on Bioenergy (BIOEN) - Thematic Grants