Advanced search
Start date
Betweenand


Peering into the mind: unraveling schizophrenia's secrets using models

Full text
Author(s):
Nani, Joao V. ; Muotri, Alysson R. ; Hayashi, Mirian A. F.
Total Authors: 3
Document type: Journal article
Source: MOLECULAR PSYCHIATRY; v. N/A, p. 20-pg., 2024-09-08.
Abstract

Schizophrenia (SCZ) is a complex mental disorder characterized by a range of symptoms, including positive and negative symptoms, as well as cognitive impairments. Despite the extensive research, the underlying neurobiology of SCZ remain elusive. To overcome this challenge, the use of diverse laboratory modeling techniques, encompassing cellular and animal models, and innovative approaches like induced pluripotent stem cell (iPSC)-derived neuronal cultures or brain organoids and genetically engineered animal models, has been crucial. Immortalized cellular models provide controlled environments for investigating the molecular and neurochemical pathways involved in neuronal function, while iPSCs and brain organoids, derived from patient-specific sources, offer significant advantage in translational research by facilitating direct comparisons of cellular phenotypes between patient-derived neurons and healthy-control neurons. Animal models can recapitulate the different psychopathological aspects that should be modeled, offering valuable insights into the neurobiology of SCZ. In addition, invertebrates' models are genetically tractable and offer a powerful approach to dissect the core genetic underpinnings of SCZ, while vertebrate models, especially mammals, with their more complex nervous systems and behavioral repertoire, provide a closer approximation of the human condition to study SCZ-related traits. This narrative review provides a comprehensive overview of the diverse modeling approaches, critically evaluating their strengths and limitations. By synthesizing knowledge from these models, this review offers a valuable source for researchers, clinicians, and stakeholders alike. Integrating findings across these different models may allow us to build a more holistic picture of SCZ pathophysiology, facilitating the exploration of new research avenues and informed decision-making for interventions. (AU)

FAPESP's process: 19/09207-3 - Study of molecular and cellular mechanisms in mental disorders
Grantee:João Victor Silva Nani
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 20/01107-7 - Study to optimize the use of crotamine as a theranostic in the therapy of human diseases: cancer, metabolic syndrome and renal dysfunction
Grantee:Mirian Akemi Furuie Hayashi
Support Opportunities: Regular Research Grants
FAPESP's process: 22/00527-8 - Enzymatic activity of oligopeptidases Ndel1 and/or ACE in plasma or blood serum of patients with Depression
Grantee:Larissa Ribino Parra
Support Opportunities: Scholarships in Brazil - Scientific Initiation
FAPESP's process: 17/02413-1 - Validation of crotamine as a biomarker and evaluation of its potential use in the therapy of human diseases
Grantee:Mirian Akemi Furuie Hayashi
Support Opportunities: Regular Research Grants
FAPESP's process: 19/08287-3 - Effect of crotamine on glucose uptake by brown adipose tissue: evaluation in an experimental model with 18FDG PET
Grantee:Marcelo Tatit Sapienza
Support Opportunities: Regular Research Grants
FAPESP's process: 22/03297-3 - Exploring the molecular and cellular mechanism(s) underlying neurodevelopmental disorders: investigating the role(s) of Nuclear Distribution Element like-1 (Ndel1)
Grantee:João Victor Silva Nani
Support Opportunities: Scholarships abroad - Research Internship - Doctorate
FAPESP's process: 19/13112-8 - Study of molecular and cellular mechanisms involved in mental disorders: clinical and animal models analysis
Grantee:Mirian Akemi Furuie Hayashi
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 14/50891-1 - INCT 2014: Translational Medicine
Grantee:Jaime Eduardo Cecilio Hallak
Support Opportunities: Research Projects - Thematic Grants