Advanced search
Start date
Betweenand


What challenges hinder the adoption of antimicrobial surface in the dental implant market?

Full text
Author(s):
Borges, Maria Helena R. ; Nagay, Bruna E. ; Souza, Joao Gabriel S. ; Barao, Valentim A. R.
Total Authors: 4
Document type: Journal article
Source: Expert Review of Medical Devices; v. 21, n. 12, p. 5-pg., 2024-12-13.
Abstract

Introduction Implant failures resulting from peri-implant infections can have substantial consequences, underscoring the urgent need for effective strategies to prevent biofilm formation on implant surfaces. However, despite advancements in antimicrobial surface technologies, significant challenges persist in translating these innovations into clinically viable solutions. Areas covered This article provides an overview of the limitations of current treatment protocols and explores the potential of antimicrobial surface treatments for controlling such infections. Furthermore, we highlight the importance of balancing antimicrobial efficacy with biocompatibility and mechanical stability, key factors for long-term implant performance. Finally, we address the main challenges in translating these technologies into clinical practice, including the unpredictability of long-term antimicrobial effects, regulatory compliance gaps, and methodological weaknesses in current research. Expert opinion The development of antimicrobial surfaces holds promise for enhancing the longevity of dental implants; however, current modifications face persistent challenges, hindering their translation into the dental implant market. Future advancements should prioritize 'smart' or stimulus-responsive surfaces that can release antimicrobials on demand. This strategy aims to efficiently combat infections while minimizing the risks of cytotoxicity and antimicrobial resistance, potentially leading to more effective and clinically translatable solutions. (AU)

FAPESP's process: 22/16267-5 - Antimicrobial and osteogenic surface development by electrodeposition of polypyrrole film on titanium surfaces treated by plasma electrolytic oxidation: a multifunctional coating for dental implants
Grantee:Valentim Adelino Ricardo Barão
Support Opportunities: Regular Research Grants
FAPESP's process: 22/07353-5 - Antimicrobial and osteogenic surface development by electrodeposition of polypyrrole film on titanium surfaces treated by plasma electrolytic oxidation: a multifunctional coating for dental implants
Grantee:Maria Helena Rossy Borges
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 24/15196-2 - Development of a Three-dimensional Smart Electroconductive Hydrogel as an Advanced Strategy for Peri-implant Infection Control
Grantee:Bruna Egumi Nagay
Support Opportunities: Scholarships in Brazil - Support Program for Fixating Young Doctors
FAPESP's process: 24/02209-9 - Development of a Three-dimensional Smart Electroconductive Hydrogel as an Advanced Strategy for Peri-implant Infection Control
Grantee:Valentim Adelino Ricardo Barão
Support Opportunities: Regular Research Grants