Advanced search
Start date
Betweenand


Fine-tuning Generative Adversarial Networks using Metaheuristics A Case Study on Barrett's Esophagus Identification

Full text
Author(s):
Souza, Luis A. ; Passos, Leandro A. ; Mendel, Robert ; Ebigbo, Alanna ; Probst, Andreas ; Messmann, Helmut ; Palm, Christoph ; Papa, Joao P.
Total Authors: 8
Document type: Journal article
Source: BILDVERARBEITUNG FUR DIE MEDIZIN 2021; v. N/A, p. 6-pg., 2021-01-01.
Abstract

Barrett's esophagus denotes a disorder in the digestive system that affects the esophagus' mucosal cells, causing reflux, and showing potential convergence to esophageal adenocarcinoma if not treated in initial stages. Thus, fast and reliable computer-aided diagnosis becomes considerably welcome. Nevertheless, such approaches usually suffer from imbalanced datasets, which can be addressed through Generative Adversarial Networks (GANs). Such techniques generate realistic images based on observed samples, even though at the cost of a proper selection of its hyperparameters. Many works employed a class of nature-inspired algorithms called metaheuristics to tackle the problem considering distinct deep learning approaches. Therefore, this paper's main contribution is to introduce metaheuristic techniques to fine-tune GANs in the context of Barrett's esophagus identification, as well as to investigate the feasibility of generating high-quality synthetic images for early-cancer assisted identification. (AU)

FAPESP's process: 16/19403-6 - Energy-based learning models and their applications
Grantee:João Paulo Papa
Support Opportunities: Regular Research Grants
FAPESP's process: 13/07375-0 - CeMEAI - Center for Mathematical Sciences Applied to Industry
Grantee:Francisco Louzada Neto
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 14/12236-1 - AnImaLS: Annotation of Images in Large Scale: what can machines and specialists learn from interaction?
Grantee:Alexandre Xavier Falcão
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 19/08605-5 - Computer-assisted diagnosis of Barretts's esophagus using machine learning techniques
Grantee:Luis Antonio de Souza Júnior
Support Opportunities: Scholarships abroad - Research Internship - Doctorate
FAPESP's process: 17/04847-9 - Barrett's Esophagus Assisted Diagnosis Using Machine Learning
Grantee:Luis Antonio de Souza Júnior
Support Opportunities: Scholarships in Brazil - Doctorate