Advanced search
Start date
Betweenand


Some Aspects of Thermodynamic Formalism of Piecewise Smooth Vector Fields

Full text
Author(s):
Florentino, Marco ; Carvalho, Tiago ; Cassiano, Jeferson
Total Authors: 3
Document type: Journal article
Source: Journal of Dynamics and Differential Equations; v. N/A, p. 23-pg., 2025-06-16.
Abstract

In this paper we study some aspects of thermodynamic formalism, more specifically topological pressure and, as a consequence, topological entropy for piecewise smooth vector fields, using topological conjugation with shift maps and the Perron-Frobenius Operator. Some relationships between entropy and Hausdorff dimensions are also investigated. As consequences of our results, we obtain planar piecewise smooth vector fields with topological entropy and Hausdorff dimension equal to log alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log \alpha $$\end{document} for all alpha is an element of(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1, 2]$$\end{document}. We stress that, for the best of our knowledge, it is the first time in the literature where the topological pressure and the Hausdorff dimension of a piecewise smooth vector field is obtained. Moreover, the obtainment of topological entropy given equal to a real number log alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log \alpha $$\end{document}, for all alpha is an element of(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1, 2]$$\end{document}, is an extension of previous results where the topological entropy of the planar piecewise smooth vector fields considered are logk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log k$$\end{document}, for k a positive integer. (AU)

FAPESP's process: 21/12395-6 - Piecewise smooth vector fields: theory and applications
Grantee:Tiago de Carvalho
Support Opportunities: Regular Research Grants
FAPESP's process: 19/10269-3 - Ergodic and qualitative theories of dynamical systems II
Grantee:Claudio Aguinaldo Buzzi
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 22/02819-6 - Intermittent vector fields: theoretical aspects and applications
Grantee:Tiago de Carvalho
Support Opportunities: Research Grants - Initial Project