Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles

Full text
Author(s):
Magalhaes, Fernando H. [1] ; Kohn, Andre F. [2]
Total Authors: 2
Affiliation:
[1] Univ Sao Paulo, EPUSP, PTC, Neurosci Program, Sao Paulo - Brazil
[2] Univ Sao Paulo, EPUSP, PTC, Biomed Engn Lab, Sao Paulo - Brazil
Total Affiliations: 2
Document type: Journal article
Source: JOURNAL OF NEUROENGINEERING AND REHABILITATION; v. 7, JUN 10 2010.
Web of Science Citations: 17
Abstract

Background: High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. Methods: Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, M(max) and F-waves were elicited at different times before or after the vibratory stimulation. Results: The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. Conclusions: These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms. (AU)

FAPESP's process: 07/03608-9 - Effect of transcutaneous electrical nervous stimulation (TENS) and vibration on human postural sway
Grantee:Fernando Henrique Magalhães
Support Opportunities: Scholarships in Brazil - Doctorate