Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Glutamatergic neurotransmission in the inferior colliculus influences intrastriatal haloperidol-induced catalepsy

Full text
Author(s):
Medeiros, P. [1] ; Viana, M. B. [1] ; Barbosa-Silva, R. C. [1] ; Tonelli, L. C. [1] ; Melo-Thomas, L. [2, 1]
Total Authors: 5
Affiliation:
[1] Univ Fed Sao Paulo, Dept Biociencias, BR-71060001 Santos, SP - Brazil
[2] Inst Neurociencias & Comportamento INeC, BR-14040901 Ribeirao Preto, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: Behavioural Brain Research; v. 268, p. 8-13, JUL 15 2014.
Web of Science Citations: 7
Abstract

The inferior colliculus (IC) is an important midbrain relay station for the integration of descending and ascending auditory information. In addition, it has also been implicated in the processing of acoustic information of aversive nature, as well as in sensory-motor gating. There is evidence that glutamate-mediated mechanisms at the IC level influence haloperidol-induced catalepsy. The present study investigated the influence of glutamate-mediated mechanisms in the IC on catalepsy induced by intrastriatal microinjection of haloperidol (10 mu g/0.5 mu l). Male Wistar rats received bilateral intracollicular microinjections of the glutamate receptor agonist NMDA (10 or 20 nmol/0.5 mu l), the NMDA receptor antagonists MK-801 (15 or 30 nmol/0.5 mu l) or physiological saline (0.5 mu l), followed by bilateral microinjections of haloperidol (10 mu g/0.5 mu l) or vehicle (0.5 mu l) into the dorso-rostral or ventro-rostral striatum. The catalepsy test was performed positioning both forepaws of the rats on an elevated horizontal wooden bar and recording the time during which the animal remained in this position. The results showed that the administration of physiological saline in the IC followed by the microinjection of haloperidol in the dorso-rostral region of the striatum was not able to induce catalepsy. However, when the bilateral administration of NMDA into the IC was followed by microinjection of haloperidol into the dorso-rostral striatum, catalepsy was observed. The microinjection of haloperidol into the ventro-rostral striatum induced catalepsy, counteracted by previous administration of MK-801 into the IC. These findings suggest that glutamate-mediated mechanisms in the IC can influence the intrastriatal haloperidol-induced catalepsy and that the IC plays an important role as a sensorimotor interface. (C) 2014 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 09/01437-8 - Investigation of glutamatergic neurotransmission mediated by NMDA receptors in the inferior colliculus in catalepsy induced by haloperidol
Grantee:Liana Melo-Thomas
Support Opportunities: Regular Research Grants
FAPESP's process: 11/01409-4 - Electrical stimulation and recording of the neural activity into the inferior colliculus during the haloperidol-induced catalepsy: a behavioral and electrophysiologic study
Grantee:Liana Melo-Thomas
Support Opportunities: Regular Research Grants
FAPESP's process: 10/14446-2 - Involvement of the glutamatergic neurotransmission in the inferior colliculus on the catalepsy induced by intraestriatal haloperidol microinjection
Grantee:Priscila Medeiros de Freitas
Support Opportunities: Scholarships in Brazil - Master