| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia - Spain
[2] Univ Estadual Campinas, Dept Matemat, BR-13083859 Sao Paulo - Brazil
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS; v. 25, n. 11 OCT 2015. |
| Citações Web of Science: | 8 |
| Resumo | |
We study a class of discontinuous piecewise linear differential systems with two zones separated by the straight line x = 0. In x > 0, we have a linear saddle with its equilibrium point living in x > 0, and in x < 0 we have a linear differential center. Let p be the equilibrium point of this linear center, when p lives in x < 0, we say that it is real, and when p lives in x > 0 we say that it is virtual. We assume that this discontinuous piecewise linear differential system formed by the center and the saddle has a center q surrounded by periodic orbits ending in a homoclinic orbit of the saddle, independent if p is real, virtual or p is in x = 0. Note that q = p if p is real or p is in x = 0. We perturb these three classes of systems, according to the position of p, inside the class of all discontinuous piecewise linear differential systems with two zones separated by x = 0. Let N be the maximum number of limit cycles which can bifurcate from the periodic solutions of the center q with these perturbations. Our main results show that N = 2 when p is on x = 0, and N >= 2 when p is a real or virtual center. Furthermore, when p is a real center we found an example satisfying N >= 3. (AU) | |
| Processo FAPESP: | 12/18780-0 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos |
| Beneficiário: | Marco Antônio Teixeira |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 13/16492-0 - Método Averaging para o estudo de soluções periódicas de equações diferenciais e suas aplicações |
| Beneficiário: | Douglas Duarte Novaes |
| Modalidade de apoio: | Bolsas no Exterior - Estágio de Pesquisa - Doutorado |