Advanced search
Start date
Betweenand

Classical, asymptotic, quantum and geometric combinatorics

Grant number:23/03167-5
Support Opportunities:Research Projects - Thematic Grants
Start date: April 01, 2025
End date: March 31, 2030
Field of knowledge:Physical Sciences and Mathematics - Computer Science - Theory of Computation
Principal Investigator:Yoshiharu Kohayakawa
Grantee:Yoshiharu Kohayakawa
Host Institution: Instituto de Matemática e Estatística (IME). Universidade de São Paulo (USP). São Paulo , SP, Brazil
City of the host institution:São Paulo
Principal investigatorsCláudio Leonardo Lucchesi ; Marcelo de Oliveira Terra Cunha ; Orlando Lee ; Sinai Robins
Associated researchers:Bárbara Lopes Amaral ; Candida Nunes da Silva ; Carlos Hoppen ; Cristiane Maria Sato ; Cristina Gomes Fernandes ; Fábio Happ Botler ; Fabricio Siqueira Benevides ; Gabriel de Morais Coutinho ; Guilherme Oliveira Mota ; Hiep Han ; Lucas Colucci Cavalcante de Souza ; Marcel Kenji de Carli Silva ; Marcelo Soares Campos ; Mathias Schacht ; Maurício de Lemos Rodrigues Collares Neto ; Maycon Sambinelli ; Meysam Miralaei ; Nicolás Sanhueza Matamala ; Patrick Wyndham Morris ; Richard Lang ; Robert Morris ; Roberto Freitas Parente ; Tássio Naia dos Santos ; Victor Sanches Portella ; Walner Mendonça dos Santos ; Yoshiko Wakabayashi
Associated scholarship(s):25/23786-7 - Classical Combinatorics, BP.IC
25/06117-4 - Zeta functions associated to polyhedral cones, BP.MS
25/06231-1 - Combinatorial Optimization with Cuts in Planar Graphs, BP.MS
25/10103-9 - Asymptotic combinatory: Extremal problems and extracombinatorial methods, BP.IC
25/06707-6 - ASYMPTOTIC COMBINATORICS: EXTREMAL PROBLEMS AND THE PROBABILISTIC METHOD, BP.IC

Abstract

We propose to investigate carefully selected problems to advance the state of the art in combinatorial analysis, always inspired by fundamental questions in the field. There will be emphasis on classic, asymptotic, quantum, and geometric problems, many of which will be approached through multifaceted techniques involving methods from more than one of these fronts of modern combinatorics. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
More itemsLess items
Articles published in other media outlets ( ):
More itemsLess items
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Scientific publications
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
JIMENEZ, A.; KNAUER, K.; LINTZMAYER, C. N.; MATAMALA, M.; PENA, J. P.; QUIROZ, D. A.; SAMBINELLI, M.; WAKABAYASHI, Y.; YU, W.; ZAMORA, J.. Boundedness for proper conflict-free and odd colorings. DISCRETE MATHEMATICS, v. 349, n. 2, p. 16-pg., . (23/03167-5, 19/13364-7)
BOTLER, FABIO; MOREIRA, LUIZ; DE SOUZA, JOAO PEDRO. Ramsey goodness of paths versus unbalanced graphs. DISCRETE MATHEMATICS, v. 349, n. 2, p. 6-pg., . (23/03167-5, 24/14906-6)