Advanced search
Start date

Biharmonic surfaces in three-dimensional Riemannian manifolds


The goals of the present research project are: 1) To give the classification of the biharmonic surfaces of constant mean curvature in the product spaces of a surface with the real line. 2) To determine examples of totally biharmonic surfaces in 3-manifolds with non-constant sectional curvature. 3) To give an answer to the following question: Is it true that the only manifolds that admit totally biharmonic surfaces are the space forms? (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
Articles published in other media outlets (0 total):
More itemsLess items

Scientific publications (4)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
CINTRA, ADRIANA A.; MERCURI, FRANCESCO; ONNIS, IRENE I.. Minimal surfaces in Lorentzian Heisenberg group and Damek-Ricci spaces via the Weierstrass representation. JOURNAL OF GEOMETRY AND PHYSICS, v. 121, p. 396-412, . (15/00692-5)
CINTRA, ADRIANA A.; ONNIS, IRENE I.. Enneper representation of minimal surfaces in the three-dimensional Lorentz-Minkowski space. Annali di Matematica Pura ed Applicata, v. 197, n. 1, p. 21-39, . (15/00692-5)
MONTALDO, STEFANO; ONNIS, IRENE I.; PASSAMANI, APOENA PASSOS. Biconservative surfaces in BCV-spaces. Mathematische Nachrichten, v. 290, n. 16, p. 2661-2672, . (15/00692-5)
ONNIS, IRENE I.; PIU, PAOLA. Constant angle surfaces in the Lorentzian Heisenberg group. ARCHIV DER MATHEMATIK, v. 109, n. 6, p. 575-589, . (15/00692-5)

Please report errors in scientific publications list by writing to: