Advanced search
Start date

Multi-user equipment approved in grant 2017/04372-0, equipment Digital Droplet PCR System and accessories

Grant number: 17/22168-1
Support Opportunities:Multi-user Equipment Program
Duration: December 01, 2017 - November 30, 2024
Field of knowledge:Biological Sciences - Genetics - Mutagenesis
Principal Investigator:Nadja Cristhina de Souza Pinto
Grantee:Nadja Cristhina de Souza Pinto
Host Institution: Instituto de Química (IQ). Universidade de São Paulo (USP). São Paulo , SP, Brazil
Associated research grant:17/04372-0 - Mitochondrial DNA: mechanisms for genome integrity maintenance and impact on disease, AP.TEM
As informações de acesso ao Equipamento Multiusuário são de responsabilidade do Pesquisador responsável
EMU web page: Página do Equipamento Multiusuário não informada
Type of equipment:Caracterização e Análises de Amostras - Proteínas/Ácidos nuclêicos - PCR
Manufacturer: Fabricante não informado
Model: Modelo não informado


Mitochondria are essential organelles in eukaryotic cells as they are involved in central pathways including energy metabolism and intracellular signaling. Besides being the main cellular site for ATP generation, they are involved in redox signaling, intracellular calcium homeostasis and cell fate after stress. Moreover, they contain their own independent genome. In humans, the mitochondrial DNA (mtDNA) is 16,569 base-pair long and encodes for 13 proteins, 2 rRNAs and 22 tRNAs. But despite its small size, its integrity is essential for cellular function, as mutations in the mtDNA cause several human syndromes, from moderate to severe clinical phenotypes. Nonetheless, the mtDNA is particularly susceptible to DNA damage accumulation, as it lies close to the electron transport chain where most cellular reactive oxygen species are generated. In fact, mtDNA accumulates significantly more DNA lesions than nuclear DNA. Thus, a better understanding of the molecular mechanisms involved in maintaining mtDNA stability is essential for comprehending the pathophysiological aspects of diseases. In this context, this project is divided into 5 subprojects, aiming at gaining a comprehensive understanding of the role of mtDNA maintenance in health and disease. These are: 1) characterization of mitochondrial DNA repair; 2) role of replication proteins in mtDNA stability; 3) role of mitochondrial rad51 in female germline and fertility; 4) mtDNA heterogeneity in renal carcinoma; and 5) mtDNA instability in exercise-intolerant patients. The results obtained from these studies will further our understanding of the molecular mechanisms responsible for maintaining mtDNA stability and on how these contribute to pathological processes, thus supporting the development of new therapeutic and preventive approaches. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
Articles published in other media outlets (0 total):
More itemsLess items

Please report errors in scientific publications list using this form.