Advanced search
Start date
Betweenand

Investigation of airfoil Self-Noise generation and propagation using large eddy simulation, analytical models and acoustic analogy

Grant number: 11/12493-6
Support type:Scholarships in Brazil - Post-Doctorate
Effective date (Start): October 01, 2011
Effective date (End): December 31, 2012
Field of knowledge:Engineering - Aerospace Engineering
Principal Investigator:João Luiz Filgueiras de Azevedo
Grantee:William Roberto Wolf
Home Institution: Instituto de Aeronáutica e Espaço (IAE). Departamento de Ciência e Tecnologia Aeroespacial (DCTA). Ministério da Defesa (Brasil). São José dos Campos , SP, Brazil

Abstract

The present work concerns the investigation of airfoil noise generated by the unsteady flow past an airfoil and its subsequent propagation to the far-field. This study is of paramount importance for the design of aerodynamic configurations such as wings and high-lift devices, as well as wind turbine blades, fans and propellers. In this project, we will primarily investigate the broadband noise that arises from the interaction of turbulent boundary layers with the airfoil trailing edge and the tonal noise that arises from vortex shedding generated by instability waves along laminar boundary layers. The turbulent aerodynamic flows analyzed give rise to noise sources at a broad range of frequencies and spatial scales. Therefore, large eddy simulation (LES) is the numerical method of choice for the flow simulations since it captures the most energetic scales associated with noise generation at an affordable computational cost compared to direct numerical simulation (DNS). The acoustic predictions will be performed by the Ffowcs Williams-Hawkings (FWH) acoustic analogy formulation and by Amiet's trailing edge noise theory. The surface and volume integrations of dipole and quadrupole source terms appearing in the FWH equation will use a 3-D wideband multi-level adaptive fast multipole method (FMM) in order to accelerate the calculations. Such numerical tool allows the analysis of the noise radiation associated with surface and volume sources separately. Therefore, it is possible to investigate the effects of dipole and quadrupole sources for each configuration, as well as the effects of convection on the computation of noise radiated by these sources. Numerical simulations will be conducted for a NACA0012 airfoil for four flow configurations with different angles of incidence, freestream Mach numbers and boundary layer tripping combinations. For all configurations, the flow Reynolds number based on the airfoil chord will be fixed at Re=408,000. Flow simulation results and aeroacoustic predictions will be compared to experimental data available in the literature.

Scientific publications (4)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
SCALABRIN, LEONARDO COSTA; AZEVEDO, JOAO LUIZ F. Numerical simulations of three-dimensional flow over a multi-stage rocket using finite volumes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 38, n. 1, p. 1-20, JAN 2016. Web of Science Citations: 0.
WOLF, WILLIAM R.; AZEVEDO, JOAO L. F.; LELE, SANJIVA K. Effects of mean flow convection, quadrupole sources and vortex shedding on airfoil overall sound pressure level. Journal of Sound and Vibration, v. 332, n. 26, p. 6905-6912, DEC 23 2013. Web of Science Citations: 7.
WOLF, WILLIAM R.; LELE, SANJIVA K. Trailing-Edge Noise Predictions Using Compressible Large-Eddy Simulation and Acoustic Analogy. AIAA JOURNAL, v. 50, n. 11, p. 2423-2434, NOV 2012. Web of Science Citations: 9.
WOLF, WILLIAM R.; AZEVEDO, JOAO LUIZ F.; LELE, SANJIVA K. Convective effects and the role of quadrupole sources for aerofoil aeroacoustics. JOURNAL OF FLUID MECHANICS, v. 708, p. 502-538, OCT 10 2012. Web of Science Citations: 28.

Please report errors in scientific publications list by writing to: cdi@fapesp.br.