Advanced search
Start date
Betweenand


Chemical, photochemical and photobiological aspects of a nitrosyl ruthenium complex as a nitric oxide precursor. Principles of application as cytotoxic agent for tumor cell lines

Full text
Author(s):
Tassiele Andréa Heinrich
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Roberto Santana da Silva; Rose Mary Zumstein Georgetto Naal; José Carlos Toledo Junior
Advisor: Roberto Santana da Silva
Abstract

Nitric oxide (NO) is a biological messenger that has vital importance in many physiological processes, such as cardiovascular control, the neural signaling and defense against microorganisms and tumors. However, the formation of other reactive species, resulting from chemical reactions of NO with the biological environment, imposes limits on the understanding of the possible cellular mechanisms involved in biological responses. Due to potential pharmacological and benefits of NO, there is a need for development of compounds that can stabilize the NO until it\'s released. One possibility involves nitrosyl ruthenium complexes thermodynamically stable but actived under stimulation. In this work, the focus is on our recent investigations of nitrosyl ruthenium complexes as NO-delivery agents and their effects on B16-F10, L929 and Jukart cell lines. The high affinity of ruthenium for NO is a marked feature of its chemistry. To better understand the NO effect as anticancer agent it was used [Ru(NO)(bdqi)(terpy)]Cl3 complex as NO delivery agent. The biological effect of that nitrosyl compound and its subproduct after NO release - [Ru(H2O)(bdqi)(terpy)]2+- was evaluated as well as their chemical and photochemical studies. The results lead to the conclusion that NO released from [Ru(NO)(bdqi)(terpy)]3+ has low cytotoxicity effect in B16-F10 cell line but, when it is entrapped in solid lipid nanoparticles, this system is improved and cell viability decreases to 50 %. This effect seems to be dependent on cellular uptake of nitrosyl ruthenium complex. It is also suggested the synergistic activity of the aquoruthenium species once its cell viability decreases to around 25 % after 24 h of incubation with this complex. Synergistic effect of NO and singlet oxygen was also evaluated as a possibility to clinical therapy. Radical oxygen species generation has been used for cancer treatment in clinical therapy known as Photodynamic Therapy (PDT). The success of this therapy depends on oxygen concentration, and hypoxia usually culminates in diminished formation of reactive oxygen species triggering clinical failure of PDT. One of the aims of this thesis is propose synergistic effect of singlet oxygen and NO since it displays antitumor character depending on the NO concentration as an attempt to improve PDT. To this end, the trinuclear species [{Ru(NO)(bpy2)}2RuPc(pz)2](PF6)6 (I) was synthesized and it has been proposed as NO and singlet oxygen photogenerator. Photobiological assays using (I) at 0,4 ?M in B16F10 cell line decreases cell viability to around 30 % under light irradiation at 660 nm, while at the same concentration of compound, without light (I) shows 90 % of cell viability. Studies concerning to cell death mechanism of this compound is also discussed in this work. The potential application of a system like (I) in clinical therapy against cancer must be considered an upgrade for photodynamic therapy. (AU)

FAPESP's process: 08/09935-4 - Biological activity of ruthenium complexes as Nitric oxide donor agents in neoplasic cell lines. Chemical, photochemical and citotoxic aspects
Grantee:Tassiele Andréa Heinrich
Support Opportunities: Scholarships in Brazil - Doctorate