Advanced search
Start date
Betweenand


Pulmonary effects of cigarette smoke associated to diesel exhaustedparticle (DEP) in mice

Full text
Author(s):
Petra de Mello Motta Arantes
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Milton de Arruda Martins; Paolo José Cesare Biselli; Carla Máximo Prado; Kelly Yoshizaki
Advisor: Milton de Arruda Martins
Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by limitation of gas exchange and is considered a non-reversible, progressive disease and associated with an abnormal inflammatory response of the lungs to particles and harmful gases, with extrapulmonary symptoms. Cigarette smoke (CS) is the major cause, since 80% of COPD cases are associated with smoke. Also, the air pollution is considered a risk factor in the development, acceleration, exacerbation and mortality of COPD. Moreover, diesel exhaust particles (DEP) are a major source of traffic-related air pollution. Many studies have demonstrated the damaging effects of CS and air pollution on human health; however, few have related the association between the two factors. Considering a smoker in an urban area undergoes daily to this two exogenous agents simultaneously, we evaluated the effects of CS associated to DEP, from diesel-powered engines in the São Paulo city, on emphysema development at 1, 3 and 6 months. Mice were divided into fifteen groups: control (C); vehicle (V) (NaCl 0.9%); DEP (30?g DEP in 10ul NaCl 0.9%/day, 5 days/wk); CS (exposed to CS, 30 minutes/day, 5 days/wk); and CS+DEP. We evaluated respiratory mechanics; inflammatory cells in bronchoalveolar lavage fluid (BALF); mean linear intercept (Lm) and morphometry and remodeling: peribronchovascular edema, MMP-12, Mac-2, elastin and collagen-III. There was a significant increase in airway resistance in CS and CS+DEP compared to group V and DEP at 6 mo. We observed an increase in Lm after 6 mo in the CS, DEP and CS+DEP groups compared to group V. The total number of cells in BALF and macrophage showed an increase at 3 mo of CS exposure and at 6 mo of CS or DEP exposure. However, there was a decrease of the number of total cells at 6 mo in CS+DEP compared to V. Polimorphonuclear cells in airways were increased after 3 and 6 months mainly in the DEP and CS+DEP groups. Peribronchovascular edema was increased in the CS+DEP group after 1 mo, CS and DEP groups after 3 mo and CS and CS+DEP groups after 6 mo. Elastin, increased for the CS, DEP and CS+DEP groups and collagen III only for the CS+DEP group; and the density of MMP-12 positive cells in CS, DEP and CS+DEP, and Mac-2 in DEP, all after 6 months of exposure.Therefore, the onset of COPD, with enlargement of alveolar spaces, occurs after 6 mo of exposure independent of which exogenous particles were inhaled. However, we did not show an impairment in emphysema when animals received both CS+DEP inhalation. Analysis of cell profiles showed an increase in inflammatory cells after CS or DEP exposure, but on different pathways, while interaction of CS+DEP showed an additive effect that attenuated the inflammatory process after 6 mo and that intensively acted on remodeling mechanisms. Our study supports the additives effects of the interaction between CS and DEP, mimicking a smoker exposed to urban air pollution. And reaffirms that this complex interaction still demand more clarification and it is a great field of research in lung disease (AU)