Advanced search
Start date
Betweenand


Shapelets sampling and quality measurements

Full text
Author(s):
Lucas Schmidt Cavalcante
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Gustavo Enrique de Almeida Prado Alves Batista; Ronaldo Cristiano Prati; Elaine Parros Machado de Sousa
Advisor: Gustavo Enrique de Almeida Prado Alves Batista
Abstract

A time series is a time ordered sequence of real values. Given that numerous daily phenomena that can be described by time series, there is a great interest on its data mining, specially on the task of classification. Recently it was introduced a new time series primitive called shapelets, that is a subsequence that allows the classification of time series by local patterns. On the shapelet transformation these subsequences turn into attributes in a distance matrix that measures the dissimilarity between these attributes and the time series. To obtain the shapelet transformation it is required to choose some shapelets among all of the possible ones, be it to avoid overfitting or because it is too computationally expensive to obtain everyone. Thus, some shapelet quality measurements were created. Traditionally the information gain has been used as the default measurement, however, recently it was proposed to use the f-statistic instead, and in this work we propose a new one called in-class transitions. On our experiments it is shown that usually the in-class transitions achieves the best accuracy, specially when few attributes are used. Moreover, we propose the use of random sampling of shapelets as a way to reduce the search space and to speed up the process of obtaining the shapelet transformation. We contrast this approach with one that explores only shapelets that have a specific length. Our experiments show that random sampling is faster and requires fewer shapelets to be computed. In fact, we got the best results when we sampled 5% of the shapelets, but even at a rate of 0.05% it was not possible to detect a significant degradation of the accuracy. (AU)

FAPESP's process: 13/16164-2 - Motif discovery by the use of the complexity invariance
Grantee:Lucas Schmidt Cavalcante
Support Opportunities: Scholarships in Brazil - Master