Advanced search
Start date
Betweenand


Ellipsoid packing

Full text
Author(s):
Rafael Durbano Lobato
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Defense date:
Examining board members:
Ernesto Julian Goldberg Birgin; Reinaldo Morabito Neto; José Mario Martinez Perez; Sandra Augusta Santos; Yoshiko Wakabayashi
Advisor: Ernesto Julian Goldberg Birgin
Abstract

The problem of packing ellipsoids consists in arranging a given collection of ellipsoids within a particular set. The ellipsoids can be freely rotated and translated, and must not overlap each other. A particular case of this problem arises when the ellipsoids are balls. The problem of packing balls has been the subject of intense theoretical and empirical research. In particular, many works have tackled the problem with optimization tools. On the other hand, the problem of packing ellipsoids has received more attention only in the past few years. This problem appears in a large number of practical applications, such as the design of high-density ceramic materials, the formation and growth of crystals, the structure of liquids, crystals and glasses, the flow and compression of granular materials, the thermodynamics of liquid to crystal transition, and, in biological sciences, in the chromosome organization in human cell nuclei. In this work, we deal with the problem of packing ellipsoids within compact sets from an optimization perspective. We introduce continuous and differentiable nonlinear programming models and algorithms for packing ellipsoids in the n-dimensional space. We present two different models for the non-overlapping of ellipsoids. As these models have quadratic numbers of variables and constraints, we also propose an implicit variables models that has a linear number of variables and constraints. We also present models for the inclusion of ellipsoids within half-spaces and ellipsoids. By applying a simple multi-start strategy combined with a clever choice of starting guesses and a nonlinear programming local solver, we present illustrative numerical experiments that show the capabilities of the proposed models. (AU)

FAPESP's process: 12/23916-8 - Ellipsoid packing
Grantee:Rafael Durbano Lobato
Support Opportunities: Scholarships in Brazil - Doctorate