Advanced search
Start date
Betweenand


Polyamine metabolism in zygotic and somatic embryogenesis of Araucaria angustifolia (Bertol.) Kuntze

Full text
Author(s):
Leandro Francisco de Oliveira
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Biociências (IBIOC/SB)
Defense date:
Examining board members:
Eny Iochevet Segal Floh; Helaine Carrer; Igor Cesarino; Ana Margarida da Costa Macedo Fortes; Adriana Pinheiro Martinelli
Advisor: Eny Iochevet Segal Floh
Abstract

The Araucaria angustifolia is a native conifer species of Brazil. Due to its intense exploitation, the species cover only 2% of its original forest area. In this system, biotechnological tools, like somatic embryogenesis, may be integrated into breeding and conservation programs. The similarity between zygotic and somatic embryogenesis have been used to establishment of studies in order to optimization of somatic embryos in vitro culture, as well as for a better understanding of physiologic and molecular aspects that modulates the embryogenesis. The metabolism of polyamines (PAs), specifically putrescine, spermidine and spermine, has been demonstrated as fundamental for the comprehension and evolution of zygotic and somatic embryogenesis. However, the biosynthetic pathways of PAs and their involvement in various biological process that regulate the embryogenesis are little known in conifers. Inserted in this perspective, the aim of the current work was to study the metabolism of PAs during three seeds development stages (containing the early till late embryogenesis phases) and in proliferation of cell lines with different embryogenic potential of A. angustifolia. Were investigated: a) PAs (free and conjugated) and amino acids profiles; b) determination of preferential pathway for putrescine biosynthesis, through enzymatic activity of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC); c) identification and characterization of gene expression profile of genes related to metabolism of PAs; and d) identification of the relationship between PAs and amino acids profiles in seeds of mother plants, and their potential influence in initiation, proliferation and maturation phases of somatic embryos. During the zygotic embryogenesis, AaADC (arginine decarboxylase) and AaSAMDC (S-adenosylmethionine decarboxylase) genes were up-regulated at cotyledonary stage along with the increasing of PAs. The biosynthesis of putrescine is performed preferentially by ADC pathway, while citrulline was the main amino acid recorded during the seed development. Regarding the metabolism of PAs in embryogenic cultures, the data demonstrated that arginine and ornithine seem to have different functions in each cell line tested. In cell line with high embryogenic potential, arginine seems to be associated to activation of genes related to PAs catabolism (AaPAO2, AaCuAO e AaALDH), while in blocked cell line this effect was not observed. ODC has a higher enzymatic activity in responsive cell line, while in blocked cell line, both ADC and ODC activities are similar. Depending of mother plant, were observed different PAs and amino acids profiles, being these profiles related with the rate of initiation, proliferation and maturation of somatic embryos. Total putrescine, ornithine and asparagine were the differentially metabolites identified between the mother plants, which can be proposed as biochemical marker to select mother plant with high potential to somatic embryogenesis. The results obtained provide relevant and inedited information about the metabolism of PAs and amino acids in zygotic and somatic embryogenesis of A. angustifolia, as well as provide news subsidies for optimization of in vitro conditions for somatic embryos development (AU)

FAPESP's process: 12/22738-9 - Polyamine metabolism in zygotic and somatic embryogenesis of Araucaria angustifolia (Bert.) O. Kuntze
Grantee:Leandro Francisco de Oliveira
Support Opportunities: Scholarships in Brazil - Doctorate