Advanced search
Start date
Betweenand


Participation of transient receptor potential vanilloid type 4 (TRPV4) and melastatin type 8 (TRPM8) in micturition dysfunction of diabetic mice

Full text
Author(s):
Antonio Celso Saragossa Ramos Filho
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Ciências Médicas
Defense date:
Examining board members:
Edson Antunes; Maria Andréia Delbin; Jose Antonio Rocha Gontijo; Clélia Akiko Hiruma Lima; Andre Sampaio Pupo
Advisor: Edson Antunes
Abstract

The TRPV4 and TRPM8 receptors are expressed in bladder urothelium and sensitive afferent fibers. Physiologically, the mechanical activation of TRPV4 receptor in the bladder wall is involved in micturition control. In inflammatory diseases, these receptors may have important roles. The bladder dysfunction in diabetes may be associated with changes at the level of detrusor, innervation and urothelium. The urothelial dysfunction triggers neural changes, modifying consequently the smooth muscle contractility. Thus, the goal of the present study was to investigate the pathophysiological mechanisms of TRPV4 and TRPM8 receptor activation in physiological and diabetic conditions in mice. For this purpose we divided the study in two phases, the first of which we evaluated the participation of TRPV4 and TRPM8 receptors in detrusor contractile and relaxing mechanisms in control and knockout animals for these channels. In the second phase we studied the activation of these channels in diabetic mice induced by intraperitoneal injection of streptozotocin (STZ; 180 mg / kg, 4 weeks). The TRPV4 agonist GSK1016790A produced concentration-dependent detrusor contractions. On the other hand, in detrusor pré-contracted with KCl (80 mM), GSK1016790A caused relaxation responses. In TRPV4-/- animals, we verified hypercontractility to carbachol (muscarinic agonist) and electrical-field stimulation, as well as a decreased relaxation to isoprenaline (non-selective ?-adrenergic agonist). These effects were not obtained with the TRPV4 antagonists, RN1734 and HC067047. Induction of diabetes with STZ caused hyperglycemia, mechanical nocicepton, and increased ratio between bladder and body weight after 4 weeks. The miccturition evaluationin diabetic animals showed increased capacity, urinary frequency, and non-voiding contractions. Hypercontractility to carbachol, electrical-field stimulation and KCl in isolated detrusor were lso observed. The induction of diabetes in TRPV4-/- animals did not change the urinary dysfunctions. Our data are consistent with the proposal that TRPV4 receptor has a physiological function in micturition control by decreasing muscarinic-induced contractions and increasing ?-adrenergic-mediated relaxations. Moreover, the bladder contractions to carbachol and EFS in TRPM8-/- did not significantly change compared to TRPM8+/+. However, menthol (300 ?M), but not icilin (1 ?M), significantly inhibited these contractile responses. The menthol (300 ?M) inhibited extracellular calcium influx in bladder smooth muscle cell culture by direct mechanism though Cav1.2 channels. In addition the acute treatment with menthol, intraperitoneal and intravesical, atenuated the micturition dysfunctions observed in diabetic mice. Also, detrusor preparations pre-treated with menthol decreased carbachol hypercontractility, without changing the responses in normoglycemic group. Menthol reduces bladder contractions by mechanisms independent of TRPM8 receptor activation, inhibiting extracellular calcium influx through Cav1.2 channel, thus been considered as treatment for bladder overactivity of myogenic origin (AU)

FAPESP's process: 10/10553-9 - Involvement of transient receptor potential vanilloid type 4 (TRPV4) on voiding dysfunctions of diabetes mices
Grantee:Antonio Celso Saragossa Ramos Filho
Support Opportunities: Scholarships in Brazil - Doctorate