Advanced search
Start date
Betweenand


Studies in vitro and in vivo novel compounds: with target-specific (hnRNP K and SET) or the mitochondrion action for use as antitumor in oral carcinoma cell or as cytoprotection in non-tumor

Full text
Author(s):
Renata Nishida Goto
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Andréia Machado Leopoldino; Taísa Magnani Dinamarco; Luis Lamberti Pinto da Silva; Luiz Gonzaga Tone
Advisor: Andréia Machado Leopoldino
Abstract

Advances in understanding the biology of head and neck cancer have opened new directions in science. Research is being directed at the development of therapies with specific molecular targets that are useful in predicting treatments or in selecting patients who may respond to a particular molecular therapy based on molecular changes of the tumors. The hnRNP K and SET proteins, recently identified as overexpressed in head and neck cancer, represent a new and attractive therapeutic target for this type of cancer. Mitochondria have also been the object of study, since they participate in the processes of cell death by apoptosis, and are involved in cell survival. In this work we evaluated the in vitro and in vivo effects in oral carcinoma and non-tumor cell of new compounds with specific target (hnRNP K and SET) or with action in mitocondria, for application either as antitumor or cytoprotectant. The cytotoxicity of the compounds was evaluated by the resazurin method in head and neck squamous cell carcinoma cell lines (HN13, HN12, HN6 and CAL27). Compounds 11 and 17, specific targets of hnRNP K protein, showed low cytotoxicity; the peptide OP449, specific target of SET protein, and compound YV-241, acting on mitochondria, showed high cytotoxicity, with IC50 values of 5.11 and 7. 77?M, respectively. OP449 altered SET-regulated proteins and decreased proliferation of tumor cells in the orthotopic xenograft model in BALB/c nude mouse. The results, however, were not significant. The association of OP449 with FTY720 caused a significant synergistic effect (CID <0.7) on HN12 cell line, and decreased the xenograft tumors. The YV-241 compound altered mitochondrial membrane potential of tumor cells and increased the number of mitochondria, observed by transmission electron microscopy and by confocal microscopy, reduced proteins involved with signaling pathways for survival, proliferation, cell cycle and angiogénesis, and induced apoptosis with the involvement of mitochondria. In addition,the compound reduced tumors of the xenograft model. The possible cytoprotective effect of the compound JM-E-H was observed in the NOK-SI lineage through the regulation of HIF-1? signaling pathway. Therefore, OP449 + FTY720 and compound YV-241 show therapeutic potential against oral carcinoma, and the compound JM-E-H, potential cytoprotective effect (AU)

FAPESP's process: 13/01355-7 - In vitro and in vivo study of new compounds: with target-specific (hnRNP K) or action in the mitochondria for use as antitumor oral carcinoma or as cytoprotective in non-tumor cell
Grantee:Renata Nishida Goto
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)