Advanced search
Start date
Betweenand


Effects of glutamine and alanine supplementation, in their free form or as dipeptide, on fatigue parameters of rats submitted to resistance training

Full text
Author(s):
Audrey Yule Coqueiro
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Julio Orlando Tirapegui Toledo; Bruno Gualano; Newton Nunes; Ronaldo Vagner Thomatieli dos Santos
Advisor: Julio Orlando Tirapegui Toledo
Abstract

Fatigue is defined as the inability to maintain muscle power and strength, impairing performance. Nutritional interventions have been used to delay this phenomenon, such as glutamine and alanine supplementation. These amino acids might attenuate several causes of fatigue, since they are important energy substrates, transport ammonia avoiding the accumulation of this toxic metabolite and attenuate muscle damage and oxidative stress. Thus, the aim of this study was to evaluate the effects of glutamine and alanine supplementation on central and muscle fatigue parameters of rats submitted to resistance training (RT). Forty adult Wistar rats (60 days) were distributed into five groups: SED (sedentary, receiving water), CON (trained, receiving water), ALA, G+A and DIP (trained and supplemented with alanine, glutamine and alanine in their free form, and Lalanyl-L-glutamine, respectively). Trained groups underwent a ladder-climbing exercise, with progressive loads, for eight weeks. Supplements were diluted in water to a 4% concentration and offered ad libitum during the last 21 days of experiment. RT increased plasma glucose, the muscle concentrations of ammonia and glutathione (GSH) and the muscle damage parameters - plasma creatine kinase (CK) and lactate dehydrogenase (LDH), whereas decreased muscle glycogen. G+A supplementation prevented the increase of muscle ammonia by RT, while ALA and G+A administration reduced plasma CK and LDH, and DIP supplementation increased the muscle content of glycogen and LDH. Contrary to expectations, DIP administration increased central fatigue parameters, such as plasma concentration of free fatty acids (FFA), hypothalamic content of serotonin and serotonin/dopamine ratio. Despite these results, there was no difference between groups in the maximum carrying capacity (MCC) tests. In conclusion, supplementation with glutamine and alanine improves some fatigue parameters, but does not affect physical performance of rats submitted to RT (AU)

FAPESP's process: 16/22789-3 - Effect of chronic oral supplementation with L-glutamine and L-alanine, in their free forms or as dipeptide, on parameters associated with fatigue in rats submitted to resistance exercise
Grantee:Audrey Yule Coqueiro
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)