Advanced search
Start date
Betweenand


Methane emission and functional microbiota associated with sugarcane vinasse in storage and transportation systems

Full text
Author(s):
Bruna Gonçalves de Oliveira
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Brigitte Josefine Feigl; Fernando Dini Andreote
Advisor: Brigitte Josefine Feigl
Abstract

This research aimed to quantify methane (CH4) emissions from the vinasse in different storage and transportation systems and, additionally, to evaluate the functional microbiota associated with the production of this gas by molecular biology approaches. Three complimentary studies were performed to reach this goal. The first one was related to the characterization of main vinasse storage and transportation systems adopted in Brazil based on a survey administered to the mills, in south-central region of Brazil, producing sugarcane etanol. The second aimed to quantify the CH4 emissions from vinasse in both, field - channels and thanks - and laboratory conditions. The third study evaluated the functional microbiota associated with the CH4 emission by molecular biology approaches like real time PCR ans pyrosequencing. Microbial analysis indicated that CH4 emissions are produced preferably by anaerobic decomposition of the organic material dissolved in the vinasse and deposited on the bottom of the systems. These emissions are not negligible and should be considered in ethanol\'s carbon footprint calculations. At the uncoated part of the channel, the average emission from two crop years was 0.75 kg CO2 eq m-3 of vinasse, about 5 times greater than the emissions at the coated part. Methane emissions from the tank were about seventy times lower than from the uncoated channel. The laboratory experiment supported the understanding that the vinasse alone produces no significant emission of CH4. The microbial methanogenic niches were probably formed in the sediment, while the vinasse keeps sediment anaerobic conditions necessary for methanogenesis and provides nutrients to speed up the reaction. The Methanobrevibacter genus showed dominant in methanogenic microbial community, as demonstrated by pyrosequencing of the 16S rRNA gene. There was a positive correlation between the abundance of 16S rRNA gene Archaea and the functional mcrA and mba genes with the emission of CH4. Information on production and emission of CH4 and vinasse characteristics are important for decision making on mitigation and/or use of gas generated for economic and environmental purposes. (AU)

FAPESP's process: 12/05735-6 - Methane emission and functional microbiota associated with sugarcane vinasse in storage and transportation systems
Grantee:Bruna Gonçalves de Oliveira Carvalho
Support Opportunities: Scholarships in Brazil - Doctorate