Advanced search
Start date
Betweenand


Exploring the fundamentals of liquid chromatography and mass spectrometry for integration between proteomics, microfluidics and chemometrics

Full text
Author(s):
Weliton Pedro Batiston
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Química de São Carlos (IQSC/BT)
Defense date:
Examining board members:
Emanuel Carrilho; Fábio Cesar Gozzo; Fernando Mauro Lanças
Advisor: Emanuel Carrilho
Abstract

This thesis proposes to the readers scientific trends in analytical chemistry applied to the solution and instrumental development to proteomics analysis. Thus, in Chapter 1 we described a new chemometrics strategy to the optimization of hyphenated analytical techniques achieving greater identification of sample compounds (> 80%). Consequently, in Chapter 2, we proposed three models with validated tridimensional information: i) chemistry; ii) physics, and iii) instrumental; which one of them improved some analytical figures of merit and isoforms identification applied to shotgun and bottom-up proteomics analysis. Our findings indicate that among all physical-chemistry properties from peptides, the hydrophobicity of the biomolecules linked to specific instrumental parameters in the step of partition LC and desolvation MS achieved record identification of peptides (> 65k). Chapter 3 approaches the development of hybrid monolithic capillary columns for nanoflow in liquid chromatography, applied to the separation of biomolecules (amino acids, peptides, and intact proteins). We tested the multifunctionality of this product, such as a trap application using a high percentage of organic solvent (95%) or using it as a multidimensional chromatography system, showing the fast separation of seven peptides in less than 10 minutes. In Chapter 4 we discussed strategies for the development of µchip for multidimensional separation coupled to a mass spectrometer. At last, Chapter 5, we elaborated on a thermodynamic equation to predict peak broadening of biomolecules during analytical separation by ion exchange mode. This mathematical approach adds knowledge in separation science and justifies the efficient proteomics analysis from multidimensional chromatography systems with stop-flow in the first dimension. The purpose of this thesis is to add a multidisciplinary character in the areas of chemistry, mathematics, engineering, and biology. In special, Chapters 3 and 4, we propose a market bias in terms of the development of technology innovation products. (AU)

FAPESP's process: 15/16025-8 - Multidimensional chromatographic systems (nano-HPLC and microchip) hyphenated to tandem mass spectrometry of high resolution for quantitative proteomics
Grantee:Weliton Pedro Batiston
Support Opportunities: Scholarships in Brazil - Doctorate