Advanced search
Start date
Betweenand


Development and characterization of menthol and xylitol microcapsules by complex coacervation and its application in chewing gum

Full text
Author(s):
Milla Gabriela dos Santos
Total Authors: 1
Document type: Doctoral Thesis
Press: Pirassununga.
Institution: Universidade de São Paulo (USP). Faculdade de Zootecnica e Engenharia de Alimentos (FZE/BT)
Defense date:
Examining board members:
Carmen Silvia Fávaro Trindade; Izabela Dutra Alvim; Judite das Graças Lapa Guimarães; Samantha Cristina de Pinho; Vânia Regina Nicoletti Telis
Advisor: Carmen Silvia Fávaro Trindade
Abstract

The microencapsulation process has been widely applied in food and one of the aims that have been highlighted is to control the release of the active agent at the desired time and local. Therefore, the objective was to microencapsulate cooling agents (menthol and xylitol) to apply them in chewing gum, aiming to prolong the feeling of freshness. Xylitol and menthol were microencapsulated using complex coacervation method. The microcapsules were characterized by particle size, morphology (optical microscopy, confocal and scanning electron), instrumental color parameter, hygroscopicity, moisture, water activity (Aw), solubility, sorption isotherms, Fourier transform Infrared Spectroscopy (FTIR), thermal behavior (Differential Scanning Calorie -DSC), encapsulation efficiency and release control. The chewing gums were produced in the research and development laboratory of a food industry. Eight formulations were produced, four with microcapsules and four with free ingredients. The gums were analyzed for moisture, Aw and instrumental color parameter; by texture profile analysis (TPA) was evaluated hardness, springiness, chewiness and cohesiveness of the gum. Analysis of time-intensity (TI) of chewing gum was conducted with 19 trained panelists to evaluate the duration of the freshness sensation provided by such ingredients. The microcapsules obtained had characteristics suitable for application in foods such as average particle size of approximately 100 µm and low levels of humidity, Aw, solubility and hygroscopicity. By confocal microscopy and FTIR analysis it was confirmed that the cores were completely encapsulated by wall material, ensuring the success of the technique. The encapsulation efficiency was high in menthol microcapsules but relatively low for xylitol microcapsules. By the DSC analysis it was found that xylitol and menthol crystalline state transform to the amorphous state after the microencapsulation process, which does not affect the properties of menthol, but in the xylitol yes, because their freshness is attributed to its endothermic heat of dissolution. Chewing gums showed low values of Aw and moisture, which favors the microbiological stability. Through TPA, was observed that the presence of xylitol improved the texture parameters of the gums because the gums produced with this compound showed the lowest hardness, chewiness and elasticity. The presence of the microcapsules was not significantly influenced the texture parameters analyzed. Time-Intensity analysis confirmed that the microcapsules were able to promote gradual release of menthol and xylitol, because the freshness of chewing gum containing microcapsules lasted longer than the chewing gum free ingredients. (AU)

FAPESP's process: 12/16515-7 - Microencapsulation of xylitol by complex coacervation and your application in chewing gum
Grantee:Milla Gabriela dos Santos
Support Opportunities: Scholarships in Brazil - Doctorate