Advanced search
Start date
Betweenand


The effect of culture composition and the implementation of milk on the growth, acidification rate, survival and metabolism of probiotic bacteria in fermented milk

Full text
Author(s):
Ricardo Pinheiro de Souza Oliveira
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Maricê Nogueira de Oliveira; Attílio Converti; Patrizia Perego; Adalberto Pessoa Junior; Ana Lúcia Figueiredo Porto
Advisor: Maricê Nogueira de Oliveira
Abstract

Probiotics dairy products and/or symbiotic are leaders in the functional foods market and have the research priority in several countries. The results of this study showed that the quality of fermented milk was strongly influenced by composition of probiotic co-cultures and different prebiotics, such as oligofructose, polydextrose, maltodextrin and inulin. The acidification kinetics was influenced by the composition of the probiotic co-cultures and prebiotic ingredients in the fermented milk. The milk supplementation with inulin reduced the fermentation time of the co-cultures of Streptococcus thermophilus + Lactobacillus acidophilus (St-La); Streptococcus thermophilus + Lactobacillus rhamnosus (St-Lr) and Streptococcus thermophilus + Bifidobacterium lactis (St-Bl), and improved the firmness of the probiotic fermented milk. It has also been observed that the amount of conjugated linoleic acid (CLA) increased in the milk fermented by the co-culture S. thermophilus + L. acidophilus supplemented with maltodextrin. As far as the bacterial counts are concerned, the inulin addition promoted the viability of probiotic bacteria during storage at 4°C and led to a bifidogenic effect, in vitro, stimulating the growth of B. lactis. As regards to the metabolic studies of the homofermentative co-cultures (St-La and St-Lb), studied in this work, it can be said that lactose was only partially fermented to lactic acid, galactose was metabolized to some extent, diacetyl and acetoin formed at appreciable levels. The acetoin and diacetyl were probably produced by the activities of α-acetolactate synthase and α-acetolactate decarboxylase of S. thermophilus. (AU)