Advanced search
Start date
Betweenand


Effects of nickel and platinum complexes derived from Schiff base on non–muscle invasive urinary bladder cancer

Full text
Author(s):
Mirian Yoshiko Matsumoto
Total Authors: 1
Document type: Doctoral Thesis
Press: Botucatu. 2018-09-14.
Institution: Universidade Estadual Paulista (Unesp). Instituto de Biociências. Botucatu
Defense date:
Advisor: Wagner José Fávaro
Abstract

Bladder cancer (BC) is the second most common genitourinary malignancy. Most (75%) BCs are non–muscle invasive (NMIBC) at first diagnosis [Ta, T1, and carcinoma in situ (CIS)]. Currently, the most used treatment against NMIBC involves the immunotherapy with BCG (Bacillus Calmette-Guérin) associated with the transurethral resection. However, the use of BCG can cause severe side effects and it is associated with high recurrence rate after treatment. Therefore, several approaches have been investigated, including the development of new molecules and also the improvement of the therapy with drugs conventionally used to treat cancers by using drug delivery systems. Considering the use of new molecules, metal complexes derived from Schiff bases (SBs) are versatile molecules with anticancer activity, providing new perspectives for the therapy of NMIBC. Regarding the drug delivery, over the past few years, nanostructured lipid carriers (NLCs) have been attracting considerable interest as alternative carriers for anticancer pharmaceuticals. Thus, in order to acquire more information about the chemistry of the complexes derived from the SB of N-Salicylidene aniline (Salan), as well as its effects on the progression of NIMBC, the present thesis describes the synthesis and characterization of N-Salicylidene aniline(nickel) [Salan(Ni)] and N-Salicylidene aniline(platinum) [Salan(Pt)] complexes. The proposed structure of these compounds was established by elemental analysis (CHN), FTIR, TG, 1H and 13C NMR. Cytotoxic activities of the synthesized compounds [Salan, NiCl2 and Salan(Ni)] were evaluated by the MTT assay and the obtained data indicated that Salan(Ni) showed significant cytotoxic activity against leukemia and liver cancer cells lines. Furthermore, in this study the histopathological and molecular effects of the synthesized compounds [Salan, Salan(Ni) and Salan(Pt)] were characterized and compared with BCG treatment in an animal model of NMIBC. Our results demonstrated that the Salan(Ni) group: improved histopathological recovery when compared with Cancer group; increased UPIII protein levels; increased expression of tumor suppressors genes PTEN and p53; inhibited of angiogenesis assigned to elevated levels of endostatin and lower levels of VEGF. However, during the instillation of treatments, compounds precipitation were observed. Then, tests using 2% DMSO in corn oil as vehicle for Salan-type complexes [Salan(Ni) and Salan(Pt)] were performed. Additionally, Salan(Pt) complex was incorporated into nanostructured lipid carrier (NLC) derived from murumuru. The NLC loaded with Salan(Pt) [Salan(Pt)-NLC] was prepared by using mechanical agitation method and had an average diameter of 165,4 nm as well as zeta potential of -34,4 mV. Ultimately, the obtained compounds [Salan(Ni), Salan(Pt), free NLC, Salan(Pt)-NLC] were administered in vivo to evaluete their effects against NMIBC. The histological analysis revealed that Salan(Ni) group Abstract MATSUMOTO, M. Y. Tese de Doutorado em Biologia Geral e Aplicada – UNESP – Botucatu showed bestter histopathological recovery. Western blotting (WB) analysis indicated that Salan(Ni), Salan(Pt) and Salan(Pt)-NLC treatments probably activate the p53 pathway by decreasing the protein levels of Akt and PI3K. In conclusion, the results showed the Salan(Ni) has better effects in reduction of NMIBC aggressiveness compared to the other complexes and BCG (AU)

FAPESP's process: 13/04708-8 - Effects of nickel and platinum complexes derived from Schiff base versus immunotherapy using Bacillus Calmette-Guerin (BCG) in the progression of non-muscle invasive bladder cancer (NMIBC)
Grantee:Mirian Yoshiko Matsumoto
Support Opportunities: Scholarships in Brazil - Doctorate